SHREE H.N.SHUKLA GROUP OF COLLEGES

M.Sc. (Mathematics)

Semester-IV

IMP Questions of Number Theory-2

Q-1 Short Questions

1. Find the value of r_{0}, r_{1}, r_{2}, and r_{3} for the continued fraction expansion $\langle 1,1,1,1,2\rangle$.
2. Find the general solution (if any) of the Diophantine equation $2 x+9 y=18$.
3. Find first four positive solution of $x^{2}-8 y^{2}=1$.
4. Find two Primitive Pythagorean triplet (x, y, z) for which $z<59$.
5. Find two positive integers n such that $1+2+3+4+\cdots+n$ is a perfect square.
6. Define with examples: (a) Quadratic irrational and (b) Pell's equation.
7. Define: (a) Primitive Pythagorean triplet (b) Simple Continued fraction expansion.
8. Give the definition of Diophantine equation.
9. Express the rational numbers $\frac{101}{7}$ and $\frac{1437}{11}$ as simple continued fractions.
10. Express $\frac{2018}{17}$ as a simple continued fraction.
11. Find the continued expansion of $\frac{\sqrt{5}+1}{2}$ and $\frac{\sqrt{5}-1}{2}$.
12. Show that $\operatorname{gcd}(x, y)=\operatorname{gcd}(y, z)$, where (x, y, z) is a Pythagorean Triplet.
13. Write down all Farey Fractions between 0 and 1 up to 7 th row.
14. Find the value of $\langle 1,1,2,2,2, \ldots \ldots\rangle$ and $\langle-2,2,4,3,3, \ldots \ldots\rangle$.
15. Find atleast three positive solutions of the equation $x^{2}-2 y^{2}=1$.
16. If r and s are positive integers and t is a rational solution of $x^{r}=s$ then t must be \qquad . Justify your answer.
17. Show that there are infinitely many solutions (x, y) of $x^{2}-d y^{2}=1$ in which k / y for $d>1$ is not a perfect square and $k \geq 1$.
18. If $\frac{a}{b}$ and $\frac{c}{d}$ are consecutive Farey fractions in the nth row and $\frac{a}{b}$ is less than $\frac{c}{d}$ then $\frac{a}{b}$ and $\frac{a+c}{b+d}$ are consecutive Farey fractions in the \qquad row.
19. If $\frac{a}{b}$ and $\frac{c}{d}$ are consecutive Farey fractions in the nth row then $\left|\frac{a}{b}-\frac{a+c}{b+d}\right| \leq$ \qquad .
20. If the simple continued fraction expansion of θ is finite then θ must be a \qquad number.
21. If θ is an irrational number and $\frac{a}{b}$ is a rational number such that $b>0$ and $\left|\theta-\frac{a}{b}\right|<\frac{1}{2 b^{2}}$ then $\frac{h_{n}}{k_{n}}=$ \qquad for some n.
22. If continued fraction expansion of an irrational θ is periodic and θ^{\prime} lies between -1 and 0 then continued fraction expansion of θ is \qquad —.
23. If θ is an irrational, $\frac{a}{b}$ is a rational number such that $\left|\theta-\frac{a}{b}\right|<\left|\theta-\frac{h_{n}}{k_{n}}\right|$ for some $n \geq 0$ then b is greater than \qquad -
24. The Diophantine equation $a x+b y=c$ has a solution if and only if \qquad divides c.

Q-2 Long Questions.

1. State and prove Hurwitz Inequality for simple continued fractions.
2. Prove that for an irrational number x the infinite continued expansion is always unique.
3. If $a_{0} a_{1} a_{2}, \ldots a_{n} \ldots$ is sequence of integers with $a_{i} \geq 1$; for $i=1,2,3, \ldots$. Then show that $\left|x k_{n}-h_{n}\right|<\left|\frac{1}{k_{n+1}}\right| ; \forall n$, where x is an irrational number.
4. Suppose $u \neq 0$ is an integer and $v>1$ is not a perfect square with $|u|<\sqrt{v}$. If (a, b) is the positive solution of $x^{2}-v y^{2}=u$ then $a=h_{n}$ and $b=k_{n}$, for some n provided $(a, b)=1$.
5. Find three positive solutions of the equation $x^{2}-3 y^{2}=1$.
6. Justify: Is $x^{2}-15 y^{2}=-1$ has a solution in integers?
7. Suppose $\left\langle a_{0}, a_{1}, a_{2}, \ldots, a_{n}, \ldots\right\rangle$ be an infinite sequence of integers with $a_{i} \geq 1$; for $i=$ $1,2,3, \ldots . n$. Then prove that the subsequences $r_{2 j}$ and $r_{2 j-1}$ both converge to the same point, where h_{j}, k_{j} and r_{j} are defined as usual.
8. Prove that if θ is an irrational number and suppose for some rational number $\frac{a}{b}$ for $b>0$ and $(a, b)=1$ with $|\theta b-a|<\left|\theta k_{n}-h_{n}\right|$; for some n then $b \geq k_{n+1}$.
9. Prove that the equation is $30 x^{2}-14 y^{2}=18$ does not have solution in integer.
10. Write an algorithm to find the sequence of integers $a_{0} a_{1} a_{2}, \ldots a_{n} \ldots$ when an irrational number is given and then explain with an example.
11. Prove that the value of $f(x)=x^{4}+x^{3}+x^{2}+x+1$ is a perfect square only for $x=$ $-1,0,3$ otherwise $f(x)$ is not a perfect square.
12. If $x>1$ and $-1<x^{\prime}<0$ the show that the continued fraction expansion of x is purely periodic provided x is a quadratic irrational.
13. Show that if the triplet (x, y, z) is a Primitive Pythagorean triplet then there exists r and s such that $r>s \geq 1$. $(r, s)=1$ and r is even then s is odd and vice-versa.
14. State and prove the necessary and sufficient condition under which the continued Farey expansion of a quadratic irrational is purely periodic.
15. If θ irrational and $\theta=\left\langle a_{0}, a_{1}, a_{2}, \ldots, a_{n}, \ldots\right\rangle$ then prove that $k_{n}<\theta_{n} k_{n-1}+k_{n-2}<k_{n+1}$ for all $n \geq 0$
16. Prove that π is irrational using elementary method.
17. Prove that for each $n>0$ there is a polynomial $f_{n}(x)$ of degree n, leading coefficient 1 and with integer coefficients such that $f_{n}(2 \cos \theta)=\operatorname{acos} n \theta$.
18. Suppose θ is an irrational and $\frac{a}{b}$ is a rational number such that $\left|\theta-\frac{a}{b}\right|<\frac{1}{2 b^{2}}$ then prove that $\frac{a}{b}=r_{n}$ for some n.
19. Find general solutions (if any) of the following Diophantine equation:
(1) $2 x+9 y=11$
(2) $100 x+101 y=2018$.
20. Find the value of following continued fractions:
(1) $\langle 1,1,1,1,1\rangle$
(2) $\langle 0,2,2,2,2,2, \ldots \ldots\rangle$
(3) $\langle 1,3,3,3,3, \ldots \ldots\rangle$
(4) $\langle-1,1,1,1,1,1, \ldots \ldots\rangle$
21. Suppose θ is an irrational number whose continued fraction expansion is periodic. Prove that θ is quadratic irrational.
22. Prove that there are infinitely many positive integers n such that $1+2+3+4+\cdots+n=$ m^{2} for some integer m.
23. If $\frac{h_{j}}{k_{j}}$ denotes $\mathrm{j}^{\text {th }}$ convergent of an irrational number θ then prove that for all $n \geq 1$
(1) $\left|\theta k_{n}-h_{n}\right|<\left|\theta k_{n-1}-h_{n-1}\right|$
(2) $\left|\theta-\frac{h_{n}}{k_{n}}\right|<\left|\theta-\frac{h_{n-1}}{k_{n-1}}\right|$
24. If θ is an irrational number then prove that there are infinitely many rational number $\frac{a}{b}$ such that $\left|\theta-\frac{a}{b}\right|<\frac{1}{2 b^{2}}$.
25. Suppose $f(x)=a_{n} X^{n}+a_{n-1} X^{n-1}+\ldots \ldots+a_{0}$ is a polynomial of degree n, with integer coefficients and suppose $\frac{a}{b}$ is a rational number with $b>0,(a, b)=1$ and $\frac{a}{b}$ is a root of $f(x)$. Prove that b divides a_{n} and a divides a_{0}. Deduce that if $a_{n}=1$ then $\frac{a}{b}$ must be an
integer and also deduce that if an integer x has a rational $n^{t h}$ root then it must be an integer.
26. If θ is a quadratic irrational such that (i) $\theta>1$ (ii) $-1<\theta^{\prime}<0$ then prove that continued fraction expansion of θ is purely periodic.
27. Prove that $x^{2}=y^{3}+7$ has no solution in integers.
28. Prove that there are infinitely many positive integers n such that $n^{2}+(n+1)^{2}$ is a perfect square.
29. Suppose $a_{0}, a_{1}, a_{2}, \ldots, a_{n}$ are positive integers and $\frac{h_{n}}{k_{n}}$ are the $n^{\text {th }}$ convergent corresponding ton this integers then prove that for all $n \geq 1, h_{n} k_{n-2}-h_{n-2} k_{n}=(-1)^{n}$.
30. Prove that θ is a rational multiple of π and $\cos \theta$ is rational then $|\cos \theta|$ cannot be different from $0, \frac{1}{2}$ and 1 .
