

SHREE H.N.SHUKLA GROUP OF COLLEGES

M.Sc. (Mathematics) Semester-IV

IMP Questions of Number Theory-2

Q-1 Short Questions

- 1. Find the value of r_0 , r_1 , r_2 , and r_3 for the continued fraction expansion (1, 1, 1, 1, 2).
- 2. Find the general solution (if any) of the Diophantine equation 2x + 9y = 18.
- 3. Find first four positive solution of $x^2 8y^2 = 1$.
- 4. Find two Primitive Pythagorean triplet (x, y, z) for which z < 59.
- 5. Find two positive integers *n* such that $1 + 2 + 3 + 4 + \dots + n$ is a perfect square.
- 6. Define with examples: (a) Quadratic irrational and (b) Pell's equation.
- 7. Define: (a) Primitive Pythagorean triplet (b) Simple Continued fraction expansion.
- 8. Give the definition of Diophantine equation.
- 9. Express the rational numbers $\frac{101}{7}$ and $\frac{1437}{11}$ as simple continued fractions.
- 10. Express $\frac{2018}{17}$ as a simple continued fraction.
- 11. Find the continued expansion of $\frac{\sqrt{5}+1}{2}$ and $\frac{\sqrt{5}-1}{2}$.
- 12. Show that gcd(x, y) = gcd(y, z), where (x, y, z) is a Pythagorean Triplet.
- 13. Write down all Farey Fractions between 0 and 1 up to 7^{th} row.
- 14. Find the value of $(1, 1, 2, 2, 2, \dots \dots)$ and $(-2, 2, 4, 3, 3, \dots \dots)$.
- 15. Find atleast three positive solutions of the equation $x^2 2y^2 = 1$.
- 16. If *r* and *s* are positive integers and *t* is a rational solution of $x^r = s$ then *t* must be_____. Justify your answer.
- 17. Show that there are infinitely many solutions (x, y) of $x^2 dy^2 = 1$ in which k/y for d > 1 is not a perfect square and $k \ge 1$.
- 18. If $\frac{a}{b}$ and $\frac{c}{d}$ are consecutive Farey fractions in the nth row and $\frac{a}{b}$ is less than $\frac{c}{d}$ then $\frac{a}{b}$ and $\frac{a+c}{b+d}$ are consecutive Farey fractions in the _____ row.
- consecutive Farey fractions in the _____ row. 19. If $\frac{a}{b}$ and $\frac{c}{d}$ are consecutive Farey fractions in the nth row then $\left|\frac{a}{b} - \frac{a+c}{b+d}\right| \leq$ _____.
- 20. If the simple continued fraction expansion of θ is finite then θ must be a____ number.
- 21. If θ is an irrational number and $\frac{a}{b}$ is a rational number such that b > 0 and $\left| \theta \frac{a}{b} \right| < \frac{1}{2b^2}$ then $\frac{h_n}{k_n} =$ ______ for some *n*.
- 22. If continued fraction expansion of an irrational θ is periodic and θ' lies between -1 and 0 then continued fraction expansion of θ is _____.
- 23. If θ is an irrational, $\frac{a}{b}$ is a rational number such that $\left| \theta \frac{a}{b} \right| < \left| \theta \frac{h_n}{k_n} \right|$ for some $n \ge 0$ then b is greater than _____.
- 24. The Diophantine equation ax + by = c has a solution if and only if _____ divides *c*.

Q-2 Long Questions.

- 1. State and prove Hurwitz Inequality for simple continued fractions.
- 2. Prove that for an irrational number *x* the infinite continued expansion is always unique.
- 3. If $a_0 a_1 a_2, \dots a_n \dots$ is sequence of integers with $a_i \ge 1$; for $i = 1, 2, 3, \dots$ Then show that
 - $|xk_n h_n| < \left|\frac{1}{k_{n+1}}\right|$; $\forall n$, where x is an irrational number.

- 4. Suppose $u \neq 0$ is an integer and v > 1 is not a perfect square with $|u| < \sqrt{v}$. If (a,b) is the positive solution of $x^2 vy^2 = u$ then $a = h_n$ and $b = k_n$, for some *n* provided (a, b) = 1.
- 5. Find three positive solutions of the equation $x^2 3y^2 = 1$.
- 6. Justify: Is $x^2 15y^2 = -1$ has a solution in integers?
- 7. Suppose $(a_0, a_1, a_2, ..., a_n, ...)$ be an infinite sequence of integers with $a_i \ge 1$; for i = 1, 2, 3, ..., n. Then prove that the subsequences r_{2j} and r_{2j-1} both converge to the same point, where h_j, k_j and r_j are defined as usual.
- 8. Prove that if θ is an irrational number and suppose for some rational number $\frac{a}{b}$ for b > 0and (a, b) = 1 with $|\theta b - a| < |\theta k_n - h_n|$; for some *n* then $b \ge k_{n+1}$.
- 9. Prove that the equation is $30x^2 14y^2 = 18$ does not have solution in integer.
- 10. Write an algorithm to find the sequence of integers $a_0a_1a_2, ... a_n$... when an irrational number is given and then explain with an example.
- 11. Prove that the value of $f(x) = x^4 + x^3 + x^2 + x + 1$ is a perfect square only for x = -1, 0, 3 otherwise f(x) is not a perfect square.
- 12. If x > 1 and -1 < x' < 0 the show that the continued fraction expansion of x is purely periodic provided x is a quadratic irrational.
- 13. Show that if the triplet (x, y, z) is a Primitive Pythagorean triplet then there exists r and s such that $r > s \ge 1$. (r, s) = 1 and r is even then s is odd and vice-versa.
- 14. State and prove the necessary and sufficient condition under which the continued Farey expansion of a quadratic irrational is purely periodic.
- 15. If θ irrational and $\theta = \langle a_0, a_1, a_2, \dots, a_n, \dots \rangle$ then prove that $k_n < \theta_n k_{n-1} + k_{n-2} < k_{n+1}$ for all $n \ge 0$
- 16. Prove that π is irrational using elementary method.
- 17. Prove that for each n > 0 there is a polynomial $f_n(x)$ of degree n, leading coefficient 1 and with integer coefficients such that $f_n(2 \cos \theta) = a \cos n\theta$.
- 18. Suppose θ is an irrational and $\frac{a}{b}$ is a rational number such that $\left| \theta \frac{a}{b} \right| < \frac{1}{2b^2}$ then prove that $\frac{a}{b} = r_n$ for some *n*.
- 19. Find general solutions (if any) of the following Diophantine equation:
 - (1) 2x + 9y = 11
 - (2) 100x + 101y = 2018.
- 20. Find the value of following continued fractions:
 - (1) (1, 1, 1, 1, 1)
 - $(2) \left< 0, 2, 2, 2, 2, 2, \ldots \right. \right>$
 - (3) (1, 3, 3, 3, 3,)
 - (4) (-1, 1, 1, 1, 1, 1,)
- 21. Suppose θ is an irrational number whose continued fraction expansion is periodic. Prove that θ is quadratic irrational.
- 22. Prove that there are infinitely many positive integers *n* such that $1 + 2 + 3 + 4 + \dots + n = m^2$ for some integer *m*.
- 23. If $\frac{h_j}{k_i}$ denotes jth convergent of an irrational number θ then prove that for all $n \ge 1$

$$\begin{aligned} (1) &| \theta k_n - h_n | < | \theta k_{n-1} - h_{n-1} | \\ (2) &| \theta - \frac{h_n}{k_n} | < | \theta - \frac{h_{n-1}}{k_{n-1}} | \end{aligned}$$

- 24. If θ is an irrational number then prove that there are infinitely many rational number $\frac{a}{b}$ such that $\left| \theta \frac{a}{b} \right| < \frac{1}{2b^2}$.
- 25. Suppose $f(x) = a_n X^n + a_{n-1} X^{n-1} + \dots + a_0$ is a polynomial of degree *n*, with integer coefficients and suppose $\frac{a}{b}$ is a rational number with b > 0, (a, b) = 1 and $\frac{a}{b}$ is a root of f(x). Prove that *b* divides a_n and *a* divides a_0 . Deduce that if $a_n = 1$ then $\frac{a}{b}$ must be an

integer and also deduce that if an integer x has a rational n^{th} root then it must be an integer.

- 26. If θ is a quadratic irrational such that (i) $\theta > 1$ (ii) $-1 < \theta' < 0$ then prove that continued fraction expansion of θ is purely periodic.
- 27. Prove that $x^2 = y^3 + 7$ has no solution in integers.
- 28. Prove that there are infinitely many positive integers *n* such that $n^2 + (n + 1)^2$ is a perfect square.
- 29. Suppose $a_{0,}a_{1,}a_{2}, ..., a_{n}$ are positive integers and $\frac{h_{n}}{k_{n}}$ are the n^{th} convergent corresponding ton this integers then prove that for all $n \ge 1$, $h_{n}k_{n-2} h_{n-2}k_{n} = (-1)^{n}$.
- 30. Prove that θ is a rational multiple of π and $\cos\theta$ is rational then $|\cos\theta|$ cannot be different from $0, \frac{1}{2}$ and 1.