Shree H. N. Shukla College of Science M.Sc.(Mathematics) Sem-1
 Prelims Test

MATH.CMT-1004 : Theory of Ordinary Differential Equations

1. Answer any seven:
(a) Define linear differential equation and linear homogeneous differential equation with example of each.
(b) State Legendre Polynomial.
(c) Write the system of differential equation $y_{1}^{\prime}=y_{2}+e^{t}, y_{2}^{\prime}=y_{1}+e^{-t}$ in the matrix form.
(d) If y_{1}, y_{2} are solutions of $\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+p(p-1) y=0$ with initial conditions $y_{1}(0)=0, y_{1}^{\prime}(0)=-1, y_{2}(0)=1, y_{2}^{\prime}(0)=0$ then the wronskian of y_{1}, y_{2} at $1 / 2$ is \qquad
(e) Prove that for every $n \times n$ real matrix, e^{A} is invertible and $\left(e^{A}\right)^{-1}=e^{-A}$.
(f) State existance and uniqueness theorem for $n^{t h}$ order scalar linear differential equations.
(g) Define Wronskian of n functions which are $(n-1)$ tiens differentiable on I.
(h) State first and second Fundamental Theorem of Calculus.
(i) State and prove $1^{s t}$ shifting property in Laplace Transform.

2. Answer any two:

$$
2 \times 7=14
$$

(a) Let $p, q: I \rightarrow \mathbb{R}$ be a continuous, $t_{0} \in I, y_{0} \in \mathbb{R}$. Then prove that the IVP: $y^{\prime}+p(t) y=$
$q(t), y\left(t_{0}\right)=y_{0}$ has a unique solution $u(t)=y_{0} e^{-P(t)}+e^{-P(t)} \int_{t_{0}}^{t} e^{p(r)} q(r) d r$, defined on the whole of I, where $P: I \rightarrow \mathbb{R}$ is defined by $P(t)=\int_{t_{0}}^{t} p(r) d r, \forall t \in I$.
(b) Show that $\phi(t)=\left(\begin{array}{ll}e^{t} & t e^{t} \\ 0 & e^{t}\end{array}\right)$ is a fundamental matrix of $y^{\prime}=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ on \mathbb{R}.
(c) Compute the first five terms of the series expansion at zero of the solution of the Legendre's equation $\left(1-t^{2}\right) y^{\prime \prime}-2 t y^{\prime}+\alpha(\alpha+1) y=0$, where α is a constant.

3. All are compulsory:

(a) Find the solution of the IVP : $y^{\prime}=\left(\begin{array}{cc}3 & 3 \\ -5 & 3\end{array}\right) y+\binom{e^{-t}}{0}, y(0)=\binom{0}{1}$.
(b) Prove that the eigen vector corresponding to the distinct eigen values of a $n \times n$ matrix A are linearly independent in \mathbb{K}^{n}.

OR

(a) Let $A(t)$ be a continuous $n \times n$ matrix on $I, \phi(t)$ be a fundamental matrix of $y^{\prime}=A(t) y$ on I and C be a $n \times n$ non-singular constant matrix. Then prove that $\phi(t) \cdot C$ is a fundamental matrix of $y^{\prime}=A(t) y$ on I.
(b) Let A be a constant 2×2 complex matrix then prove that there exists a constant 2×2 non-singular matrix B such that $B^{-1} A B$ has the following forms:

$$
\left[\begin{array}{ll}
\lambda & 0 \\
0 & \lambda
\end{array}\right] \text { and }\left[\begin{array}{ll}
\lambda & 1 \\
0 & \lambda
\end{array}\right] \text {. }
$$

4. All are compulsory:

(a) Prove that if $\alpha=2 m$, where $m \geqslant 0$ is an integer then a second linearly independent solution of the legendre equation $\left(1-t^{2}\right) y^{\prime \prime}-2 t y^{\prime}+\alpha(\alpha+1) y=0$ valid in a nbhd of 0 can be expressed in the form of power series converges for $|t|<1$.
(b) Show that $t y^{\prime \prime}+y^{\prime}+y=0$ has only one solution of the form $|t|^{z} \sum_{k=0}^{\infty} c_{k} t^{k}, c_{0}=1$ is an excluded nbhd of 0 .
(c) Locate and classify all singular points of $(t-1)^{3} y^{\prime \prime}+2(t-1)^{2} y^{\prime}-7 t y=0$.

5. Answer any two:

(a) Solve $y^{\prime \prime}-3 y^{\prime}+2 y=4 e^{2 t}$ with $y(0)=-3, y^{\prime}(0)=5$ using Laplace Transform.
(b) Find $L^{-1}\left(\frac{3 z+7}{z^{2}-2 z-3}\right)$
(c) State and prove Laplace Transform of Integral.
(d) Find $L\left(t^{n} e^{c t}\right)$

© BEST OF LUCK ©

