SHREE H. N. SHUKLA COLLEGE OF SCIENCE M.Sc.(Mathematics) Sem-1

Prelims Test

MATH.CMT-1004 : Theory of Ordinary Differential Equations

Time: 2.5 Hours

Total Marks: 70

1. Answer any seven:

- (a) Define linear differential equation and linear homogeneous differential equation with example of each.
- (b) State Legendre Polynomial.
- (c) Write the system of differential equation $y'_1 = y_2 + e^t$, $y'_2 = y_1 + e^{-t}$ in the matrix form.
- (d) If y_1 , y_2 are solutions of $(1 x^2)y'' 2xy' + p(p-1)y = 0$ with initial conditions
 - $y_1(0) = 0$, $y'_1(0) = -1$, $y_2(0) = 1$, $y'_2(0) = 0$ then the wronskian of y_1 , y_2 at 1/2 is
- (e) Prove that for every $n \times n$ real matrix, e^A is invertible and $(e^A)^{-1} = e^{-A}$.
- (f) State existance and uniqueness theorem for n^{th} order scalar linear differential equations.
- (g) Define Wronskian of *n* functions which are (n 1) tiens differentiable on *I*.
- (h) State first and second Fundamental Theorem of Calculus.
- (i) State and prove 1st shifting property in Laplace Transform.

2. Answer any two:

 $2 \times 7 = 14$

(a) Let $p, q : I \to \mathbb{R}$ be a continuous, $t_0 \in I$, $y_0 \in \mathbb{R}$. Then prove that the IVP: y' + p(t)y =

$7 \times 2 = 14$

 $q(t), y(t_0) = y_0$ has a unique solution $u(t) = y_0 e^{-P(t)} + e^{-P(t)} \int_{t_0}^t e^{p(r)} q(r) dr$, defined on the whole of I, where $P : I \to \mathbb{R}$ is defined by $P(t) = \int_{t_0}^t p(r) dr$, $\forall t \in I$.

(b) Show that $\phi(t) = \begin{pmatrix} e^t & te^t \\ 0 & e^t \end{pmatrix}$ is a fundamental matrix of $y' = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ on \mathbb{R} .

(c) Compute the first five terms of the series expansion at zero of the solution of the Legendre's equation $(1 - t^2)y'' - 2ty' + \alpha(\alpha + 1)y = 0$, where α is a constant.

3. All are compulsory:

- (a) Find the solution of the IVP : $y' = \begin{pmatrix} 3 & 3 \\ -5 & 3 \end{pmatrix} y + \begin{pmatrix} e^{-t} \\ 0 \end{pmatrix}, \quad y(0) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$
- (b) Prove that the eigen vector corresponding to the distinct eigen values of a $n \times n$ matrix *A* are linearly independent in \mathbb{K}^n .

OR

- (a) Let A(t) be a continuous $n \times n$ matrix on I, $\phi(t)$ be a fundamental matrix of y' = A(t)yon I and C be a $n \times n$ non-singular constant matrix. Then prove that $\phi(t) \cdot C$ is a fundamental matrix of y' = A(t)y on I.
- (b) Let *A* be a constant 2×2 complex matrix then prove that there exists a constant 2×2 non-singular matrix *B* such that $B^{-1}AB$ has the following forms:

$$\begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} \text{ and } \begin{bmatrix} \lambda & 1 \\ 0 & \lambda \end{bmatrix}.$$

4. All are compulsory:

- (a) Prove that if α = 2m, where m ≥ 0 is an integer then a second linearly independent solution of the legendre equation (1 t²)y'' 2ty' + α(α + 1)y = 0 valid in a nbhd of 0 can be expressed in the form of power series converges for |t| < 1.
- (b) Show that ty'' + y' + y = 0 has only one solution of the form $|t|^z \sum_{k=0}^{\infty} c_k t^k$, $c_0 = 1$ is an excluded nbhd of 0.
- (c) Locate and classify all singular points of $(t-1)^3 y'' + 2(t-1)^2 y' 7ty = 0$.

 $2 \times 7 = 14$

 $2 \times 7 = 14$

5. Answer any two:

- (a) Solve $y'' 3y' + 2y = 4e^{2t}$ with y(0) = -3, y'(0) = 5 using Laplace Transform.
- (b) Find $L^{-1}\left(\frac{3z+7}{z^2-2z-3}\right)$
- (c) State and prove Laplace Transform of Integral.
- (d) Find $L(t^n e^{ct})$

BEST OF LUCK