

m - 2025

MASTER OF SCIENCE MATHEMATICS Examination

MSC MATHS Semester - 2 APRIL 2025 (Regular) APRIL - 2025				
	RAJO 20722948	TOPOLOGY 2 Faculty Ebde: 003 Subject Code: 16SIMSMA-CO-02-00003 Hours] All questions are compulsary	RAJO #0722948	ks : 70
Q.1	An	swer Briefly any seven of the following (Out of ten)		14
	1	Define Hausdroff space with example.		
	~RAJ010722948	Let (X,d) be a metric space and $(x_n) \to x$ then show that $(x_n)_{n \in \mathbb{N}}$ is Cauchy sequence in	RAJ010722948	
	10	Prove that Q is not complete metric space.		
Q.2	722948	Prove that Q is not complete metric space. wer the following (Any Two) If d is a metric on d then show that d is Hausdroff space. Prove that A space X is d iff every singleton subset of X are closed. Prove that a space d is compact iff when d d is a family of closed subsets that having finite intersection property then d d is a family of closed subsets were the following State and prove Lebesgue covering lemma.	722948	14
Q.3	RAJ016	If d is a metric on d then show that d is Hausdroff space. Prove that A space X is T_1 iff every singleton subset of X are closed. Prove that a space d is compact iff when d d is a family of closed subsets that having finite intersection property then d	RAJ010	14
		Prove that closed subspace of normal space is normal.		
	2	OR		
	Ansv	ver the following		14
	1	State and prove tube lemma.		

Prove that continuous image of compact space is compact.

Answer the following questions (Any Two)

14

Prove that compact subspace of Hausdroff space is closed. State and prove Heine-Borel theorem. 2 Answer the following (Any Two) Q.5 Prove that X and Y are regular spaces iff X×Y is regular space. Prove that if X is compact then X is limit point compact. Is converse true? 2 Explain. RAJ010722948 RAJ010722948 Define one point compactification (X^*, τ^*) is compact and T_2 space. Prove that (\mathbf{R}, \mathbf{d}) is complete metric space. RAJ010722948 AJ010722948