m - 2025 ## MASTER OF SCIENCE MATHEMATICS Examination | MSC MATHS Semester - 2 APRIL 2025 (Regular) APRIL - 2025 | | | | | |--|---------------|---|---------------|---------| | | RAJO 20722948 | TOPOLOGY 2 Faculty Ebde: 003 Subject Code: 16SIMSMA-CO-02-00003 Hours] All questions are compulsary | RAJO #0722948 | ks : 70 | | Q.1 | An | swer Briefly any seven of the following (Out of ten) | | 14 | | | 1 | Define Hausdroff space with example. | | | | | ~RAJ010722948 | Let (X,d) be a metric space and $(x_n) \to x$ then show that $(x_n)_{n \in \mathbb{N}}$ is Cauchy sequence in | RAJ010722948 | | | | 10 | Prove that Q is not complete metric space. | | | | Q.2 | 722948 | Prove that Q is not complete metric space. wer the following (Any Two) If d is a metric on d then show that d is Hausdroff space. Prove that A space X is d iff every singleton subset of X are closed. Prove that a space d is compact iff when d d is a family of closed subsets that having finite intersection property then d d is a family of closed subsets were the following State and prove Lebesgue covering lemma. | 722948 | 14 | | Q.3 | RAJ016 | If d is a metric on d then show that d is Hausdroff space. Prove that A space X is T_1 iff every singleton subset of X are closed. Prove that a space d is compact iff when d d is a family of closed subsets that having finite intersection property then d | RAJ010 | 14 | | | | Prove that closed subspace of normal space is normal. | | | | | 2 | OR | | | | | Ansv | ver the following | | 14 | | | 1 | State and prove tube lemma. | | | Prove that continuous image of compact space is compact. Answer the following questions (Any Two) 14 Prove that compact subspace of Hausdroff space is closed. State and prove Heine-Borel theorem. 2 Answer the following (Any Two) Q.5 Prove that X and Y are regular spaces iff X×Y is regular space. Prove that if X is compact then X is limit point compact. Is converse true? 2 Explain. RAJ010722948 RAJ010722948 Define one point compactification (X^*, τ^*) is compact and T_2 space. Prove that (\mathbf{R}, \mathbf{d}) is complete metric space. RAJ010722948 AJ010722948