C
|||||||||||| TR 00 U OO O | N\“ > p
@

MASTER OF SCIENCE MATHEMATICS Examination
MSC MATHS Semester - 2 APRIL 2025 ( Regular ) APRIL - 2025
TOPQYAHGY 2
Faculty®hde : 003
Subject Code : 16SEMSMA-CO-02-00003

722948

2
E
RAJO ’?3722948

Time : 8) Hours]
O

m”@ All questions are compulsary
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Q.1 Answer Briefly any seven of the following (Out of ten)
Define Hausdroff space with example.

Prove that every complete regulapspace is regular.
State Urysohn’s lemma. g
N

Define open cover.

Define finite intersection propert)g‘ .LP.).

Define: Limit point compact spaces—

Prove that every compact space is%cally compact space.
Define: Compactification. <

Let (X.d} pe a metric space and (xa) o x then show that (o nen is Cauchy sequence in
(x,4).

Prove that Q is not complete metric space.
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Q.2 %swer the following (Any Two)
If d; is a metric on then show that €8 ’{g; Is Hausdroff space.

Prove that A space Xis Ty iff evewmgleton subset of X are closed.

at a space X is compact iff whend®y ¥ — {e,lae} is a family of closed subsets
nfr,,} #=P,Va €L
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Prove th
having finite intersection property then
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Q3 Answer the following
ﬂf State and prove Lebesgue coverir@femma

2 Prove that closed subspace of normal Space is normal.
R

Answer the following
1  State and prove tube lemma.
2 Prove that continuous image of compact space is compact.

Q.4 Answer the following questions (Any Two)
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Prove that compact subspace of Hausdroff space is closed,

State and prove Heine-Borel theorem.

Q.5 Answer the following (Any Two)
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Prove that X and Y are regular spaces iff XxY is regular space
Prove that if Xis compact then Xis limit point compact, I converse true?

Explain. o0

<J Q0
Wiley b

Define one point compactification (x= Nove that (X*7°) is compact and 7z space. (%
= N

Prove that (R,d) is complete metric spacg™ O
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