Shree H.N.Shukla group of colleges

PHYSICS

T.Y.B.Sc. (Sem. VI) (CBCS) Preliminary Examination PAPER- 603

SPECTROSCOPY AND APPLIED PHYSICS

Time: 2	$2\frac{1}{2}$ H	ours] [Total Marks :	70
Instruct	ions	 (1) All questions are compulsory. (2) Numbers on right side indicate marks. (3) Symbols have their usual meanings. 	
1 (a)	Ans	wer following objective questions: (1 mark of each)	4
	(1)	Emission spectra are devided in two types namely (i) and (ii)	
	(2)	Higher the principle quantum number means lesser the binding energy of an electron. (true/false)	
	(3)	In a stark effect, the effect of on spectral lines is studied.	
	(4)	In Paschen-Back effect, weak magnetic field is used (true/false).	
(b)	Ans	wer any one question:	2
	(1)	The series limit wavelength of Balmer series of	
		hydrogen spectrum is 3636 \mathring{A} . Calculate the value of Rydberg constant.	
	(2)	Under uniform magnetic field of 4 webers/metre ² find Δv for normal Zeeman splitting.	
(c)	Ans	wer any one question:	3
	(1)	Explain a spin quantum number.	
	(2)	Draw the experimental arrangement for studying Zeeman effect.	

	(d)	Answer any one in detail:		
		(1)	Explain magnetic moment of an atom and Lande's g factor.	
		(2)	Explain vector atom model and normal Zeeman effect.	
2	(a)	Ans	wer following objective questions: (1 mark of each)	4
		(1)	A vibrational rotation band arises due to transition between two vibrational levels of the same electronic level. (true/false).	
		(2)	In rotational vibrational spectra, near infra-red radiation is absorbed (true/false).	
		(3)	In Raman spectra, lines of same frequency as the incident beam in known as	
		(4)	The intensity of stokes and anti-stokes lines can be explained on the basis of classical theory. (true/false).	
	(b)	Ans	wer any one question:	2
		(1)	Vibration transition occurs with energy change of 1.6×10^{-20} erg/mole, calculate the frequency of radiation [h = 6.6×10^{-34} m ² kg/s, c = 3×10^{8} m/s].	
		(2)	The exciting line in Raman spectra is 5480 \mathring{A} and	
			stokes line is at 5530 \mathring{A} . Find out the Raman shift.	
	(c)	Ans	wer any one question:	3
		(1)	Give salient features of rotational vibrational spectra.	
		(2)	Give the difference between Raman spectra and fluorescence spectra.	
	(d)	Ans	wer any one in detail:	5
		(1)	Explain pure rotational spectra.	
		(2)	Explain classical theory of Raman effect.	

3	(a)	Answer following objective questions: (1 mark of each)		
		(1)	What are the three basic radiation processes? (i) (ii) and (iii)	
		(2)	In stimulated emission, σ_{21} is known as	
		(3)	He-Ne Laser is a solid state Laser (true/false).	
		(4)	In ND:YAG Laser, YAG stands for	
	(b)	Ans	wer any one question:	2
		(1)	Find the approximate area of laser spot with wavelength $\lambda = 5 \times 10^{-5}$ cm, focal Length 10 cm	
			and radius of lens is 5 cm [area = $\pi(\lambda f/a)^2$]	
		(2)	If laser beam area is 7.85×10^{-3} cm ² and luminous flux is 0.16 lumens then find out brightness of laser beam.	
	(c)	Ans	wer any one question:	3
		(1)	Explain electrical pumping.	
		(2)	Explain principle of Holography.	
	(d)	Ans	wer any one in detail:	5
		(1)	Explain semiconductor laser.	
		(2)	Explain Ruby laser.	
4	(a)	Answer following objective questions: (1 mark of each)		
		(1)	X-ray can be used to study crystal structures because wavelength of x-ray is of the order of	
		(2)	Deaceeleration of electron produces x-rays. (true/false).	
		(3)	Bragg's law is	
		(4)	In a powder method, polycrystalline powder sample is used (true/false).	
	(b)	Ans	Answer any one question:	
		(1)	Calculate the minimum voltage that must be applied to produce x-rays of $2\mathring{A}$ wavelength.	
		(2)	Find out θ for x-ray diffraction pattern obtained	
			with x-ray having $1\mathring{A}$ wavelength and interplanar	
			spacing of $2.35\mathring{A}$ for particular sets of plane.	

	(c)	Answer any one question:		3
		(1)	Give the few important properties of x-rays.	
		(2)	Explain diffraction of x-rays.	
	(d)	Answer any one in detail:		5
		(1)	Explain powder diffraction method.	
		(2)	Explain rotating crystal method.	
5	(a)	Answer following objective questions: (1 mark of each)		4
		(1)	Optical fibre works on principle of total internal reflection. (true/false).	
		(2)	decides light gathering ability of the optical fibre.	
		(3)	Write down Snell's law.	
		(4)	In order to guide light ray effectively through a fibre, what should be the value of Δ ?	
	(b)	Answer any one question:		2
		(1)	Calculate numerical aperture of an optical fibre with a refractive index of core 1.6 and cladding 1.56.	
		(2)	Find out the propagation angle of an optical fibre having refractive index of core and cladding 1.6 and 1.56, respectively.	
	(c)	Answer any one question:		3
		(1)	Explain multimode step index fibre.	
		(2)	Give merits of optical fibre.	
	(d)	Answer any one in detail:		5
		(1)	Derive expression of an acceptance angle of the optical fibre.	
		(2)	Explain attenuation in optical fibre.	