Shree H. N. Shukla College of Science

(Affiliated to Saurashtra University \& GTU)
Nr. Lalpari Lake, B/h Marketing Yard, Rajkot-360003

T.Y.B.SC. SEM-VI (CBCS)

SUBJECT: Mathematics

 PAPER: 6O1
Unit: 5

Residue and Poles

Prepared By:

Renuka Dabhi

\oplus Residue:
\checkmark In general, something that remains after a part is taken, separated, or designated or after the completion of a process: remnant, remainder: such as. The part of a testator's estate remaining after the satisfaction of all debts, charges, allowances, and previous devises and bequests.
\checkmark In mathematics, more specifically complex analysis, the residue is a complex number proportional to the contour integral of a meromorphic function along a path enclosing one of its singularities.

\oplus Pole:

\checkmark In complex analysis (a branch of mathematics), a pole is a certain type of singularity of a function, nearby which the function behaves relatively regularly, in contrast to essential singularities, such as 0 for the logarithm function, and branch points, such as 0 for the complex square root function.

Pole (complex analysis)

Order of pole ${ }^{1} 2$

Singular point

Zeros of complex function

Pole,Simple pole, $\mathrm{m}^{\text {th }}$ order pole

Residue of function

Cauchy residue theorem

> Definite integral of trigonometric functions

Evaluation of improper real integrals

LEARNING OUTCOME

\square This capstone has focused on how to use complex analysis to evaluate various definite integrals in the real plane.
\checkmark Not only does this make computing certain integrals easier, but it also allows us to evaluate integrals of functions whose anti-derivative is unknown or impossible to find.
\checkmark Aside from evaluating integrals in the real plane, the amazing result of the Residue Theorem is the ability to evaluate contour integrals such that nonanalytic points lie inside the closed contour.
\square The Residue Theorems included in this capstone are a small sample of all the Residue Theorems.
\square The basic idea behind each Residue Theorem is the same, but each theorem holds its own power and beauty.
\square Without the brilliant minds that contributed to the Residue theorems, the world would not be where it is today.

* Definition: Singular Point

If the complex function $f(z)$ is an analytic everywhere in nbhd of z_{0}, except z_{0}, then z_{0} is called Singular point.

Example;

(i) $\quad f(z)=\frac{1}{(z-1)(z-2)}$
$\therefore \mathrm{z}_{0}=1 \& \mathrm{z}_{0}=2$ are Singular point.
(ii) $\quad f(z)=\frac{1}{z(z-2)(z-3)(z-5)}$
$\therefore \mathrm{z}_{0}=0, \mathrm{z}_{0}=2, \mathrm{z}_{0}=3 \& \mathrm{z}_{0}=5$ are Singular point.

\& Definition: Isolated Singular Point

If the complex function $f(z)$ is an analytic everywhere in every nbhd of z_{0}, except z_{0}. Then z_{0} is called Isolated Singular point.

Example;

(i) $\quad f(z)=\frac{1}{z}$
$\therefore \mathrm{z}_{0}=0$ is Isolated Singular point.
(ii) $\quad f(z)=\frac{1}{(z-1)}$
$\therefore \mathrm{z}_{0}=1$ is Isolated Singular point.

Sr. No.

Question
Answer
1
If the complex function $f(z)$ is an analytic everywhere
Singular point in nbhd of z_{0}, except z_{0}, then z_{0} is called.........
2
Write the Isolated singular point for function

$$
f(z)=\frac{1}{(z-5)}
$$

* Definition: Zeros of Complex function

Let $f(z)$ be an analytic everywhere in nbhd of z_{0}, then by Taylor's expansion,
$f(z)=f\left(z_{0}\right)+\frac{\left(z-z_{0}\right)}{1!} f^{\prime}\left(z_{0}\right)+\frac{\left(z-z_{0}\right)^{2}}{2!} f^{\prime \prime}\left(z_{0}\right)+$
If;
$f\left(z_{0}\right)=f^{\prime}\left(z_{0}\right)=f^{\prime \prime}\left(z_{0}\right)=\ldots \ldots \ldots \ldots \ldots=f^{m-1}\left(z_{0}\right)=0$
But
$f^{m}\left(z_{0}\right) \neq 0$
Then z_{0} is said to be $m^{\text {th }}$ order zero of $f(z)$.
A) In particular $\mathrm{m}=1$,

That means, $f\left(z_{0}\right)=0$ but $f^{\prime}\left(z_{0}\right) \neq 0$
Then z_{0} is called $1^{\text {st }}$ order zero of $f(z)$ OR Simple zero of $f(z)$.

- Definition: Pole

Let $f(z)$ be an analytic everywhere in nbhd of z_{0}, then by Laurent's expansion of $f(z)$ at z_{0},

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}+\sum_{n=1}^{\infty} \frac{b_{n}}{\left(z-z_{0}\right)^{n}}
$$

where,

$$
a_{n}=\frac{1}{2 \pi i} \int_{C} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z \& b_{n}=\frac{1}{2 \pi i} \int_{C} \frac{f(z)}{\left(z-z_{0}\right)^{-n+1}} d z
$$

Here $2^{\text {nd }}$ term of R.H.S. of Laurent's expansion;
That means, $\sum_{n=1}^{\infty} \frac{b_{n}}{\left(z-z_{0}\right)^{n}}$ is called Principle part of Laurent's expansion.

If Principle part of Laurent's expansion contain finite term;
That means,

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}+\frac{b_{1}}{\left(z-z_{0}\right)}+\frac{b_{2}}{\left(z-z_{0}\right)^{2}}+\ldots \ldots \ldots+\frac{b_{m}}{\left(z-z_{0}\right)^{m}}
$$

Then z_{0} is called $m^{\text {th }}$ order pole of $f(z)$.
a In particular m=1,

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}+\frac{b_{1}}{\left(z-z_{0}\right)}
$$

Then z_{0} is called $1^{\text {st }}$ order pole OR Simple pole.

Sr. No.	Question	Answer
$\mathbf{1}$	$2^{\text {nd }}$ term of R.H.S. of Laurent's expansion is called.......	Principle part of Laurent's expansion
$\mathbf{2}$	If Principle part of Laurent's expansion contain finite m term then it is said to be.......	$\mathbf{m}^{\text {th }}$ order pole of $\mathrm{f}(\mathrm{z})$
$\mathbf{3}$	If Principle part of Laurent's expansion contain only first term then it is called........	Simple pole
$\mathbf{4}$	Write down the formula of Laurent's expansion.	$f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$
$+\sum_{n=1}^{\infty} \frac{b_{n}}{\left(z-z_{0}\right)^{n}}$		

* Definition: Residue of $f(z)$

Let $f(z)$ is an analytic everywhere in nbhd of z_{0}, except z_{0}. Then the coefficient of $\frac{1}{z-z_{0}}$ in Laurent's expansion is called Residue of $f(z)$ at pole z_{0} and it is denoted by
$b_{1}=\operatorname{Res}\left(f(z), z_{0}\right)=\frac{1}{2 \pi i} \int_{C} f(z) d z$

EXAMPLE-1:

Obtain the formula for finding residue of $f(z)$ at Simple pole.

SOLUTION:

Let $f(z)$ is Simple pole.

- Prepared by: Ms.Renuka Dabhi |MATHS/Sem-6/P-601/Unit-5| |RESIDUE \& POLES |

By definition of Simple pole,

$$
\begin{aligned}
& f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}+\frac{b_{1}}{\left(z-z_{0}\right)} \\
& \left(z-z_{0}\right) f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n+1}+b_{1}
\end{aligned}
$$

Now, we taking limit both sides;
$\therefore \lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) f(z)=\lim _{z \rightarrow z_{0}} \sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n+1}+b_{1}$
$\therefore \lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) f(z)=0+b_{1}$
$\therefore b_{1}=\operatorname{Res}\left(f(z), z_{0}\right)=\lim _{z \rightarrow z_{0}} f(z)\left(z-z_{0}\right)$

EXAMPLE-2:

Find the residue of $f(z)=\frac{z+2}{(z-1)(z-2)}$ at Simple pole.

SOLUTION:

Here, $f(z)=\frac{z+2}{(z-1)(z-2)}$
Pole is $(z-1)(z-2) \Rightarrow z_{0}=1$ and $z_{0}=2$
Now,
Residue of $f(z)$ at $z_{0}=1$
$\therefore b_{1}=\operatorname{Res}\left(f(z), z_{0}\right)=\lim _{z \rightarrow z_{0}} f(z)\left(z-z_{0}\right)$
$\therefore b_{1}=\operatorname{Res}(f(z), 1)=\lim _{z \rightarrow 1} \frac{z+2}{(z-1)(z-2)}(z-1)=\frac{3}{-1}=-3$

Residue of $f(z)$ at $z_{0}=2$
$\therefore b_{1}=\operatorname{Res}(f(z), 2)=\lim _{z \rightarrow 2} \frac{z+2}{(z-1)(z-2)}(z-2)=4$

EXAMPLE-3:

Find the residue of $f(z)=\frac{e^{2 z}}{z(z-1)}$ at Simple pole.

SOLUTION:

Here, $f(z)=\frac{e^{2 z}}{z(z-1)}$
Pole is $z(z-1) \Rightarrow z_{0}=0$ and $z_{0}=1$
Now,
Residue of $f(z)$ at $z_{0}=0$
$\therefore b_{1}=\operatorname{Res}(f(z), 0)=\lim _{z \rightarrow 0} \frac{e^{2 z}}{z(z-1)} z=\frac{e^{0}}{-1}=-1$
Residue of $f(z)$ at $z_{0}=1$
$\therefore b_{1}=\operatorname{Res}(f(z), 1)=\lim _{z \rightarrow 1} \frac{e^{2 z}}{z(z-1)}(z-1)=e^{2}$

EXAMPLE-4:

Find the residue of $f(z)=\frac{3 z^{2}+2}{z(z-2)}$ at Simple pole.

SOLUTION:

Here, $f(z)=\frac{3 z^{2}+2}{z(z-2)}$
\square

Pole is $z(z-2) \Rightarrow z_{0}=0$ and $z_{0}=2$
Now,
Residue of $f(z)$ at $z_{0}=0$
$\therefore b_{1}=\operatorname{Res}(f(z), 0)=\lim _{z \rightarrow 0} \frac{3 z^{2}+2}{z(z-2)} z=\frac{2}{-2}=-1$
Residue of $f(z)$ at $z_{0}=2$
$\therefore b_{1}=\operatorname{Res}(f(z), 2)=\lim _{z \rightarrow 2} \frac{3 z^{2}+2}{z(z-2)}(z-2)=\frac{14}{2}=7$

EXAMPLE-5:

Find the residue of $f(z)=\frac{3 z^{2}+1}{z(z-1)(z-2)}$ at Simple pole.

SOLUTION:

Here, $f(z)=\frac{3 z^{2}+1}{z(z-1)(z-2)}$
Pole is $z(z-1)(z-2) \Rightarrow z_{0}=0, z_{0}=1$ and $z_{0}=2$
Now,
Residue of $f(z)$ at $z_{0}=0$
$\therefore b_{1}=\operatorname{Res}(f(z), 0)=\lim _{z \rightarrow 0} \frac{3 z^{2}+1}{z(z-1)(z-2)} z=\frac{1}{(-1)(-2)}=\frac{1}{2}$
Residue of $f(z)$ at $z_{0}=1$
$\therefore b_{1}=\operatorname{Res}(f(z), 1)=\lim _{z \rightarrow 1} \frac{3 z^{2}+1}{z(z-1)(z-2)}(z-1)=\frac{4}{(1)(-1)}=-4$

Residue of $f(z)$ at $z_{0}=2$
$\therefore b_{1}=\operatorname{Res}(f(z), 2)=\lim _{z \rightarrow 2} \frac{3 z^{2}+1}{z(z-1)(z-2)}(z-2)=\frac{13}{(2)(1)}=\frac{13}{2}$

EXAMPLE-6:

Find the residue of $f(z)=\frac{e^{z}}{z(z+1)}$ at Simple pole.

SOLUTION:

Here, $f(z)=\frac{e^{z}}{z(z+1)}$
Pole is $z(z+1) \Rightarrow z_{0}=0$ and $z_{0}=-1$
Now,
Residue of $f(z)$ at $z_{0}=0$
$\therefore b_{1}=\operatorname{Res}(f(z), 0)=\lim _{z \rightarrow 0} \frac{e^{z}}{z(z+1)} z=\frac{e^{0}}{(1)}=1$
Residue of $f(z)$ at $z_{0}=-1$
$\therefore b_{1}=\operatorname{Res}(f(z),-1)=\lim _{z \rightarrow-1} \frac{e^{z}}{z(z+1)}(z+1)=\frac{e^{-1}}{(-1)}=-e^{-1}=-\frac{1}{e}$

EXAMPLE-7:

Find the residue of $f(z)=\frac{e^{3 z}}{(z-1)\left(z^{2}+4\right)}$ at Simple pole.

SOLUTION:

Here, $f(z)=\frac{e^{3 z}}{(z-1)\left(z^{2}+4\right)}=\frac{e^{3 z}}{(z-1)(z+2 i)(z-2 i)}$

\square

Pole is $(z-1)(z+2 i)(z-2 i) \Rightarrow z_{0}=1, z_{0}=-2 i$ and $z_{0}=2 i$
Now,
Residue of $f(z)$ at $z_{0}=1$
$\therefore b_{1}=\operatorname{Res}(f(z), 1)=\lim _{z \rightarrow 1} \frac{e^{3 z}}{(z-1)(z+2 i)(z-2 i)}(z-1)=\frac{e^{3}}{(1+2 i)(1-2 i)}=\frac{e^{3}}{1-4 i^{2}}=\frac{e^{3}}{5}$
Residue of $f(z)$ at $z_{0}=-2 i$

$$
\begin{array}{r}
\therefore b_{1}=\operatorname{Res}(f(z),-2 i)=\lim _{z \rightarrow-2 i} \frac{e^{3 z}}{(z-1)(z+2 i)(z-2 i)}(z+2 i)=\frac{e^{-6 i}}{(-2 i-1)(-2 i-2 i)}= \\
\frac{e^{-6 i}}{(-2 i-1)(-4 i)}=\frac{e^{-6 i}}{8 i^{2}+4 i}=\frac{e^{-6 i}}{4(i-2)}
\end{array}
$$

Residue of $f(z)$ at $z_{0}=2 i$

$$
\begin{array}{r}
\therefore b_{1}=\operatorname{Res}(f(z), 2 i)=\lim _{z \rightarrow 2 i} \frac{e^{3 z}}{(z-1)(z+2 i)(z-2 i)}(z-2 i)=\frac{e^{6 i}}{(2 i-1)(2 i+2 i)}= \\
\frac{e^{6 i}}{(2 i-1)(4 i)}=\frac{e^{6 i}}{8 i^{2}-4 i}=\frac{e^{6 i}}{-4(i+2)}
\end{array}
$$

EXERCISE-A

Find the residue of following functions at Simple pole.

1) $f(z)=\frac{e^{2 z}}{z\left(z^{2}+1\right)}$
2) $f(z)=\frac{z^{3}+2 z}{(z-1)(z-2)}$
3) $f(z)=\frac{2 z+1}{z(z-1)}$

Sr. No.

Question
Answer

1 If $f(z)$ is an analytic everywhere in nbhd of z_{0}, except z_{0}, then the coefficient of $\frac{1}{z-z_{0}}$ in Laurent's expansion is called.......
2
Give the formula to fond residue of
$f(z)$.

$$
b_{1}=\operatorname{Res}\left(f(z), z_{0}\right)
$$

$$
=\frac{1}{2 \pi i} \int_{C} f(z) d z
$$

3
Write down the value of z_{0} for the

$$
z_{0}=0 \&-1
$$

THEOREM:

If z_{0} is the $m^{\text {th }}$ order pole of complex function $f(z)$ then prove that

$$
\operatorname{Res}\left(f(z), z_{0}\right)=\frac{\phi^{m-1}\left(z_{0}\right)}{(m-1)!}
$$

Where,
$\varnothing(z)=\left(z-z_{0}\right)^{m} f(z)$

OR

Obtain the formula for finding the residue of $f(z)$ at $m^{\text {th }}$ order pole.

PROOF:

Let z_{0} is $\mathrm{m}^{\text {th }}$ order pole.
By the definition of pole,

$$
\begin{aligned}
& f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}+\frac{b_{1}}{\left(z-z_{0}\right)}+\frac{b_{2}}{\left(z-z_{0}\right)^{2}}+\ldots . .+\frac{b_{m}}{\left(z-z_{0}\right)^{m}} \\
& \therefore f(z)\left(z-z_{0}\right)^{m} \\
& \quad=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n+m}+b_{1}\left(z-z_{0}\right)^{m-1}+b_{2}\left(z-z_{0}\right)^{m-2}+\ldots+b_{m}
\end{aligned}
$$

Let $\emptyset(z)=\left(z-z_{0}\right)^{m} f(z)$
$\therefore \emptyset(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n+m}+b_{1}\left(z-z_{0}\right)^{m-1}+b_{2}\left(z-z_{0}\right)^{m-2}+\ldots+b_{m}$

Now, we expand $\emptyset(z)$ by using Taylor's series
$\emptyset(z)=\emptyset\left(z_{0}\right)+\left(z-z_{0}\right) \emptyset^{\prime}\left(z_{0}\right)+\frac{\left(z-z_{0}\right)^{2}}{2!} \emptyset^{\prime \prime}\left(z_{0}\right)+\ldots+\frac{\left(z-z_{0}\right)^{m-1}}{(m-1)!} \emptyset^{m-1}\left(z_{0}\right)$

Now,
We compare co-efficient of $\left(z-z_{0}\right)^{m-1}$ of equation (1) \& (2), then we have

$$
b_{1}=\frac{\emptyset^{m-1}\left(z_{0}\right)}{(m-1)!}
$$

Where,

$$
\emptyset(z)=\left(z-z_{0}\right)^{m} f(z)
$$

\therefore Residue of $\mathrm{f}(\mathrm{z})$ at $\mathrm{m}^{\text {th }}$ order pole,
$\operatorname{Res}\left(f(z), z_{0}\right)=b_{1}=\frac{\phi^{m-1}\left(z_{0}\right)}{(m-1)!}$, Where, $\emptyset(z)=\left(z-z_{0}\right)^{m} f(z)$

EXAMPLE-8:

Find $\operatorname{Res}\left(\frac{1-e^{z}}{z^{4}}, 0\right)$

SOLUTION:

Here, $f(z)=\frac{1-e^{z}}{z^{4}}$
Pole is $z^{4} \Rightarrow z_{0}=0$ and $z_{0}=0$ is $4^{\text {th }}$ order pole.
Now,
$b_{1}=\frac{\emptyset^{m-1}\left(z_{0}\right)}{(m-1)!}=\frac{\emptyset^{3}(0)}{3!}$
We know that
$\phi(z)=\left(z-z_{0}\right)^{m} f(z)=z^{4}\left(\frac{1-e^{z}}{z^{4}}\right)=1-e^{z}$
$\emptyset^{\prime}(z)=-e^{z}$
$\emptyset^{2}(z)=-e^{z}$
$\emptyset^{3}(z)=-e^{z} \Rightarrow \emptyset^{3}(0)=-e^{0}=-1$
By equation (1),
$b_{1}=\frac{\varnothing^{3}(0)}{3!}=\frac{-1}{3!}=-\frac{1}{6}$

EXAMPLE-9:

Find $\operatorname{Res}\left(\frac{z e^{i z}}{(z-3)^{2}}, 3\right)$

SOLUTION:

Here, $f(z)=\frac{z e^{i z}}{(z-3)^{2}}$
Pole is $(z-3)^{2} \Rightarrow z_{0}=3$ and $z_{0}=3$ is $2^{\text {nd }}$ order pole.
Now,
$b_{1}=\frac{\emptyset^{m-1}\left(z_{0}\right)}{(m-1)!}=\frac{\emptyset^{\prime}(3)}{1!}=\emptyset^{\prime}(3)$
We know that
$\phi(z)=\left(z-z_{0}\right)^{m} f(z)=(z-3)^{2}\left(\frac{z e^{i z}}{(z-3)^{2}}\right)=z e^{i z}$
$\phi^{\prime}(z)=z e^{i z} i+e^{i z}=e^{i z}(i z+1)$

$$
\therefore \emptyset^{\prime}(3)=e^{3 i}(3 i+1)
$$

By equation (1),
$b_{1}=\varnothing^{\prime}(3)=e^{3 i}(3 i+1)$

EXAMPLE-10:

Find $\operatorname{Res}\left(\frac{e^{2 z}}{(z-1)^{2}}, 1\right)$

SOLUTION:

Here, $f(z)=\frac{e^{2 z}}{(z-1)^{2}}$
Pole is $(z-1)^{2} \Rightarrow z_{0}=1$ and $z_{0}=1$ is $2^{\text {nd }}$ order pole.

Now,

$$
\begin{equation*}
b_{1}=\frac{\varnothing^{m-1}\left(z_{0}\right)}{(m-1)!}=\frac{\varnothing^{\prime}(1)}{1!}=\varnothing^{\prime}(1) \tag{1}
\end{equation*}
$$

We know that
$\phi(z)=\left(z-z_{0}\right)^{m} f(z)=(z-1)^{2}\left(\frac{e^{2 z}}{(z-1)^{2}}\right)=e^{2 z}$
$\emptyset^{\prime}(z)=2 e^{2 z}$
$\therefore \emptyset^{\prime}(1)=2 e^{2}$
By equation (1),
$b_{1}=\emptyset^{\prime}(1)=2 e^{2}$

EXAMPLE-11:

Find $\operatorname{Res}\left(\frac{e^{2 z}}{z^{2}\left(z^{2}+1\right)}, z_{0}\right)$

SOLUTION:

Here, $f(z)=\frac{e^{2 z}}{z^{2}\left(z^{2}+1\right)}=\frac{e^{2 z}}{z^{2}(z-i)(z+i)}$
Pole is $z^{2}(z-i)(z+i) \Rightarrow z_{0}=0, z_{0}=i, z_{0}=-i$
For $\mathrm{z}_{0}=0$ and $\mathrm{z}_{0}=0$ is $2^{\text {nd }}$ order pole.
Now,
$b_{1}=\frac{\emptyset^{m-1}\left(z_{0}\right)}{(m-1)!}=\frac{\emptyset^{\prime}(0)}{1!}=\emptyset^{\prime}(0)$

We know that
$\phi(z)=\left(z-z_{0}\right)^{m} f(z)=z^{2}\left(\frac{e^{2 z}}{z^{2}\left(z^{2}+1\right)}\right)=\frac{e^{2 z}}{z^{2}+1}$
$\emptyset^{\prime}(z)=\frac{\left(z^{2}+1\right) e^{2 z}(2)-e^{2 z}(2 z)}{\left(z^{2}+1\right)^{2}}=\frac{2 e^{2 z}\left(z^{2}-z+1\right)}{\left(z^{2}+1\right)^{2}}$
$\therefore \emptyset^{\prime}(0)=2 e^{0}(1)=2$
By equation (1),
$b_{1}=\emptyset^{\prime}(0)=2$
Now,
Residue of $f(z)$ at $z_{0}=i$
$\therefore b_{1}=\operatorname{Res}(f(z), i)=\lim _{z \rightarrow i} \frac{e^{2 z}}{z^{2}(z+i)(z-i)}(z-i)=\frac{e^{2 i}}{i^{2}(i+i)}=\frac{e^{2 i}}{(-1)(2 i)}=\frac{i e^{2 i}}{2}$
Now,
Residue of $f(z)$ at $z_{0}=-i$
$\therefore b_{1}=\operatorname{Res}(f(z),-i)=\lim _{z \rightarrow-i} \frac{e^{2 z}}{z^{2}(z+i)(z-i)}(z+i)=\frac{e^{-2 i}}{(-i)^{2}(-i-i)}=\frac{e^{-2 i}}{(-1)(-2 i)}=$ $\frac{-i e^{-2 i}}{2}$

Sr. No.

1

Question

Answer

Write down the formula for finding the	$\operatorname{Res}\left(f(z), z_{0}\right)$
residue of $f(z)$ at m order pole.	$=\frac{\emptyset^{m-1}\left(z_{0}\right)}{(m-1)!}$

What is the order of Pole z^{4} ?
$4^{\text {th }}$ order

THEOREM:

State and prove Cauchy residue theorem.

STATEMENT:

If the complex function $\mathrm{f}(\mathrm{z})$ is an analytic everywhere inside and on the closed contour C , except the finite number of poles (singular points $\mathrm{z}_{1}, \mathrm{z}_{2}$, z_{n} lying inside contour C) then,

$$
\begin{gathered}
\int_{C} f(z) d z=2 \pi i\left[k_{1}+k_{2}+\ldots \ldots \ldots+k_{n}\right] \\
\underline{\mathbf{O R}} \\
\int_{C} f(z) d z=2 \pi i \sum_{i=1}^{n} k_{i}, \text { where }, k_{i}=\operatorname{Res}\left(f(z), z_{i}\right), i=1,2, \ldots \ldots, n
\end{gathered}
$$

PROOF:

- Let the complex function $f(z)$ is an analytic everywhere inside and on the closed contour C , except the finite number of poles $\mathrm{z}_{1}, \mathrm{z}_{2}, \ldots, \mathrm{z}_{\mathrm{n}}$ lying inside contour C .

- Now we draw a very small circles $\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots, \mathrm{C}_{\mathrm{n}}$ with centre $\mathrm{z}_{1}, \mathrm{z}_{2}, \ldots, \mathrm{z}_{\mathrm{n}}$ respectively.
- In such a way boundaries of these circles and boundary of contour C are distinct.
- Thus, the complex function $\mathrm{f}(\mathrm{z})$ is analytic inside contour C and exterior region of the circles $C_{1}, C_{2}, \ldots, C_{n}$.
\therefore By Cauchy fundamental theorem, line integral of $f(z)$ is zero for this region.

$$
\begin{array}{r}
\quad \therefore \int_{C} f(z) d z-\int_{C_{1}} f(z) d z-\int_{C_{2}} f(z) d z-\ldots \ldots \ldots-\int_{C_{n}} f(z) d z=0 \\
\therefore \int_{C} f(z) d z=\int_{C_{1}} f(z) d z+\int_{C_{2}} f(z) d z+\ldots \ldots \ldots+\int_{C_{n}} f(z) d z \tag{i}
\end{array}
$$

Let $k_{i}=\operatorname{Res}\left(f(z), z_{i}\right)$, where $i=1,2, \ldots \ldots \ldots, n$
Now,

$$
\begin{aligned}
& b_{1}=\operatorname{Res}(f(z), z)=k_{1} \\
& b_{1}=\frac{1}{2 \pi i} \int_{C_{1}} f(z) d z \\
& \therefore k_{1}=\frac{1}{2 \pi i} \int_{C_{1}} f(z) d z
\end{aligned}
$$

$$
\int_{C_{1}} f(z) d z=2 \pi i \cdot k_{1}
$$

Now,

$$
\begin{aligned}
& k_{2}=\frac{1}{2 \pi i} \int_{C_{2}} f(z) d z \\
& \therefore \int_{C_{2}} f(z) d z=2 \pi i \cdot k_{2} \\
& \cdot \\
& \cdot \\
& \cdot \\
& \int_{C_{n}} f(z) d z=2 \pi i \cdot k_{n}
\end{aligned}
$$

Adding above term in equation (i),

$$
\int_{C} f(z) d z=2 \pi i \cdot k_{1}+2 \pi i \cdot k_{2}+\ldots \ldots .+2 \pi i \cdot k_{n}=2 \pi i\left[k_{1}+k_{2}+\ldots \ldots+k_{n}\right]
$$

OR

$$
\int_{C} f(z) d z=2 \pi i \sum_{i=1}^{n} k_{i}, \text { where } k_{i}=\operatorname{Res}\left(f(z), z_{i}\right), \quad i=1,2, \ldots \ldots, n
$$

EXAMPLE-12:

Evaluate

$$
\int_{C} \frac{5 z-2}{z(z-1)} d z ; C:|z|=2
$$

SOLUTION:

Here, $f(z)=\frac{5 z-2}{z(z-1)}$
For poles $z(z-1) \Rightarrow z_{0}=0$ and $z_{0}=1$
$Z_{0}=0 \& 1 \in C$ and $z_{0}=0 \& 1$ is first order pole.
For $z_{0}=0$,
Residue of $f(z)$ at $z_{0}=0$
$k_{1}=\operatorname{Res}(f(z), 0)=\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) f(z)=\lim _{z \rightarrow 0} z\left(\frac{5 z-2}{z(z-1)}\right)=\frac{-2}{-1}=2$
For $z_{0}=1$,
Residue of $f(z)$ at $z_{0}=1$
$k_{2}=\operatorname{Res}(f(z), 1)=\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) f(z)=\lim _{z \rightarrow 1}(z-1)\left(\frac{5 z-2}{z(z-1)}\right)=3$
Now, By Cauchy residue theorem,
$\int_{C} \frac{5 z-2}{z(z-1)} d z=2 \pi i\left[k_{1}+k_{2}\right]=2 \pi i[2+3]=10 \pi i$

EXAMPLE-13:

Evaluate

$$
\int_{C} \frac{1-2 z}{z(z-1)(z-2)} d z ; C:|z|=\frac{3}{2}
$$

SOLUTION:

Here, $f(z)=\frac{1-2 z}{z(z-1)(z-2)}$
For poles $z(z-1)(z-2) \Rightarrow z_{0}=0, z_{0}=1$ and $z_{0}=2$
$Z_{0}=0 \& 1 \in C$ but $z_{0}=2$ does not belongs to C and $z_{0}=0 \& 1$ is first order pole.
For $z_{0}=0$,
Residue of $f(z)$ at $z_{0}=0$

$$
\begin{aligned}
& k_{1}=\operatorname{Res}(f(z), 0)=\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) f(z)=\lim _{z \rightarrow 0} z\left(\frac{1-2 z}{z(z-1)(z-2)}\right)=\frac{1}{(-1)(-2)} \\
& =\frac{1}{2}
\end{aligned}
$$

For $z_{0}=1$,
Residue of $f(z)$ at $z_{0}=1$

$$
\begin{aligned}
& k_{2}=\operatorname{Res}(f(z), 1)=\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) f(z)=\lim _{z \rightarrow 1}(z-1)\left(\frac{1-2 z}{z(z-1)(z-2)}\right) \\
& =\frac{1-2}{1(1-2)}=1
\end{aligned}
$$

Now, By Cauchy residue theorem,

$$
\int_{C} \frac{1-2 z}{z(z-1)(z-2)} d z=2 \pi i\left[k_{1}+k_{2}\right]=2 \pi i\left[\frac{1}{2}+1\right]=2 \pi i\left(\frac{3}{2}\right)=3 \pi i
$$

EXAMPLE-14:

Evaluate
$\int_{C} z^{-3} e^{-z} d z$,
$C:|z|=1$

SOLUTION:

Here, $f(z)=\frac{e^{-z}}{z^{3}}$
Poles $z^{3} \Rightarrow z_{0}=0$
$\mathrm{Z}_{0}=0 \in \mathrm{C}$ and $\mathrm{z}_{0}=03^{\text {rd }}$ order pole.
$k_{1}=\frac{\varnothing^{2}(0)}{2!}$
Now,
$\emptyset(z)=e^{-z}$
$\emptyset^{\prime}(z)=-e^{-z}$
$\emptyset^{2}(z)=e^{-z}$
$\therefore \varnothing^{2}(0)=1$
By equation (i),
$k_{1}=\frac{\varnothing^{2}(0)}{2!}=\frac{1}{2}$
Now by Cauchy residue theorem,

$$
\int_{C} z^{-3} e^{-z} d z=2 \pi i k_{1}=2 \pi i\left(\frac{1}{2}\right)=\pi i
$$

EXAMPLE-15:

Evaluate

$$
\int_{|z|=3} \frac{z \cdot e^{\pi i z}}{z^{2}+2 z+5} d z
$$

SOLUTION:

Here,
$f(z)=\frac{z \cdot e^{\pi i z}}{z^{2}+2 z+5}$

For pole $z^{2}+2 z+5$
$\therefore \frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-2 \pm \sqrt{4-4(1)(5)}}{2(1)}=\frac{-2 \pm \sqrt{-16}}{2}=\frac{-2 \pm 4 i}{2}=-1 \pm 2 i$
$\therefore z_{0}=-1+2 i$ and $z_{0}=-1-2 i$,

$$
z_{0}=-1+2 i=(-1,2) \in C \& z_{0}=-1-2 i=(-1,-2) \in C
$$

and $z_{0}=-1 \pm 2 i$ Is first order pole.
\therefore Residue of $f(z)$ at $z_{0}=-1+2 i$

$$
\begin{aligned}
k_{1}=\operatorname{Res}(f & (z),-1+2 i) \\
& =\lim _{z \rightarrow-1+2 i}(z+1-2 i) \cdot \frac{z \cdot e^{\pi i z}}{(z+1-2 i)(z+1+2 i)} \\
& =\frac{(-1+2 i) e^{\pi i(-1+2 i)}}{(-1+2 i+1+2 i)}=\frac{(-1+2 i) \cdot e^{-\pi i} \cdot e^{-2 \pi}}{4 i} \\
& =\frac{(-1+2 i) \cdot e^{-2 \pi}[\cos (-\pi)+i \sin (-\pi)]}{4 i}=\frac{(-1+2 i) e^{-2 \pi}(-1)}{4 i} \\
& =\frac{(1-2 i) e^{-2 \pi}}{4 i}
\end{aligned}
$$

Now,
\therefore Residue of $f(z)$ at $z_{0}=-1-2 i$
$k_{2}=\operatorname{Res}(f(z),-1-2 i)$

$$
\begin{aligned}
& =\lim _{z \rightarrow-1-2 i}(z+1+2 i) \cdot \frac{z \cdot e^{\pi i z}}{(z+1-2 i)(z+1+2 i)} \\
& =\frac{(-1-2 i) e^{\pi i(-1-2 i)}}{(-1-2 i+1-2 i)}=\frac{(-1-2 i) \cdot e^{-\pi i} \cdot e^{2 \pi}}{-4 i} \\
& =\frac{(-1-2 i) e^{2 \pi}(-1)}{-4 i}=-\frac{(1+2 i) e^{2 \pi}}{4 i}
\end{aligned}
$$

By Cauchy residue theorem,

$$
\begin{array}{rl}
\int_{|z|=3} \frac{z \cdot e^{\pi i z}}{z^{2}+2 z}+5 & d z=2 \pi i\left[k_{1}+k_{2}\right]=2 \pi i\left[\frac{(1-2 i) e^{-2 \pi}}{4 i}-\frac{(1+2 i) e^{2 \pi}}{4 i}\right] \\
= & \frac{2 \pi i}{4 i}\left[(1-2 i) e^{-2 \pi}-(1+2 i) e^{2 \pi}\right] \\
& =\frac{\pi}{2}\left[(1-2 i) e^{-2 \pi}-(1+2 i) e^{2 \pi}\right]
\end{array}
$$

EXAMPLE-16:

Evaluate
$\int_{|z|=3} \frac{e^{t z}}{z^{2}\left(z^{2}+2 z+2\right)} d z$

SOLUTION:

Here,

$$
f(z)=\frac{e^{t z}}{z^{2}\left(z^{2}+2 z+2\right)} d z
$$

Poles $z^{2} \Rightarrow z_{0}=0$
For pole $z^{2}+2 z+2$
$\therefore \frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-2 \pm \sqrt{4-4(1)(2)}}{2(1)}=\frac{-2 \pm \sqrt{-4}}{2}=\frac{-2 \pm 2 i}{2}=-1 \pm i$
$z_{0}=-1+i$ and $z_{0}=-1-i$
Now,
$Z_{0}=0$ is second order pole.
$k_{1}=\frac{\emptyset^{m-1}\left(z_{0}\right)}{(m-1)!}=\emptyset^{\prime}(0)$
$\varnothing(z)=\left(z-z_{0}\right)^{m} f(z)=z^{2} \cdot \frac{e^{t z}}{z^{2}\left(z^{2}+2 z+2\right)}=\frac{e^{t z}}{z^{2}+2 z+2}$
$\therefore \phi^{\prime}(z)=\frac{\left[\left(z^{2}+2 z+2\right) \cdot e^{t z} \cdot t-e^{t z}(2 z+2)\right]}{\left(z^{2}+2 z+2\right)^{2}}$
$\therefore \phi^{\prime}(0)=\frac{[(2)(t)-1(2)]}{4}=\frac{2 t-2}{4}=\frac{t-1}{2}$
By equation (i),

$$
k_{1}=\emptyset^{\prime}(0)=\frac{t-1}{2}
$$

$$
z_{0}=-1 \pm i \text { is } 1^{\text {st }} \text { order pole }
$$

For $z_{0}=-1+i$
Residue of $f(z)$ at $z_{0}=-1+i$

$$
\begin{aligned}
k_{2}=\lim _{z \rightarrow z_{0}}(z & \left.-z_{0}\right) f(z) \\
& =\lim _{z \rightarrow-1+i}(z+1-i) \cdot \frac{e^{t z}}{z^{2}(z+1-i)(z+1+i)} \\
& =\frac{e^{t(-1+i)}}{(-1+i)^{2}(-1+i+1+i)}=\frac{e^{-t} \cdot e^{i t}}{(1-2 i-1)(2 i)}=\frac{e^{-t} \cdot e^{i t}}{4}
\end{aligned}
$$

For $z_{0}=-1-i$
Residue of $f(z)$ at $z_{0}=-1-i$

$$
\begin{aligned}
k_{3}=\lim _{z \rightarrow z_{0}}(z & \left.-z_{0}\right) f(z) \\
& =\lim _{z \rightarrow-1-i}(z+1+i) \cdot \frac{e^{t z}}{z^{2}(z+1-i)(z+1+i)} \\
& =\frac{e^{t(-1-i)}}{(-1-i)^{2}(-1-i+1-i)}=\frac{e^{-t} \cdot e^{-i t}}{(1+2 i-1)(-2 i)}=\frac{e^{-t} \cdot e^{-i t}}{4}
\end{aligned}
$$

By Cauchy residue theorem,

$$
\begin{aligned}
\left.\int_{|z|=3} \frac{e^{t z}}{z^{2}\left(z^{2}+\right.}+2 z+2\right) & d z=2 \pi i\left[k_{1}+k_{2}+k_{3}\right] \\
& =2 \pi i\left[\frac{t-1}{2}+\frac{e^{-t} \cdot e^{i t}}{4}+\frac{e^{-t} \cdot e^{-i t}}{4}\right] \\
& =2 \pi i\left[\frac{t-1}{2}+\frac{e^{-t}}{2}\left(\frac{e^{i t}+e^{-i t}}{2}\right)\right]=2 \pi i\left[\frac{t-1}{2}+\frac{e^{-t}}{2} \cdot \cos t\right] \\
& =\pi i\left[t-1+e^{-t} \cos t\right]
\end{aligned}
$$

EXERCISE-B

Find the residue of following functions:

1) $\int_{C} \frac{3 z^{2}+2}{(z-1)\left(z^{2}+9\right)} d z$, where $C:|z|=2$
2) $\int_{C} \frac{2 z+3}{z(z-1)} d z$, where $C:|z|=2$
3) $\int_{C} \frac{e^{z}}{z(z-1)^{2}} d z$, where $C:|z|=2$
4) $\int_{C} e^{-z} z^{-2} d z$, where $C:|z|=1$
5) $\int_{C} \frac{z^{2}+2 z}{(z+1)^{2}\left(z^{2}+4\right)} d z$, where $C:|z|=3$

Sr. No.

Question
Answer
1 What is the value of singular point for pole $z^{2}+2 z+2$?
2
First order pole is also known as

* Definite integral of trigonometric functions:

To evaluate

$$
\int_{0}^{2 \pi} F[\cos \theta, \sin \theta] d \theta
$$

Put $z=e^{i \theta}$

$$
\begin{aligned}
& d z=i e^{i \theta} d \theta \Rightarrow d \theta=\frac{d z}{i z} \\
& \cos \theta=\frac{e^{i \theta}+e^{-i \theta}}{2}=\frac{z+z^{-1}}{2}=\frac{z+1 / z}{2}=\frac{z^{2}+1}{2 z}
\end{aligned}
$$

$$
\sin \theta=\frac{e^{i \theta}-e^{-i \theta}}{2 i}=\frac{z-z^{-1}}{2 i}=\frac{z-1 / z}{2 i}=\frac{z^{2}-1}{2 i z}
$$

Thus,

$$
\int_{0}^{2 \pi} F[\cos \theta, \sin \theta] d \theta=\int_{C} f(z) d z, \quad C:|z|=1
$$

EXAMPLE-17:

Evaluate
$\int_{0}^{2 \pi} \frac{1}{1-2 a \cos \theta+a^{2}} d \theta ; a^{2}<1$

SOLUTION:

$z=e^{i \theta}$
$d z=e^{i \theta} \cdot i d \theta \Rightarrow d \theta=\frac{d z}{i z}$
$z=\cos \theta+i \sin \theta$

$$
\frac{1}{z}=\cos \theta-i \sin \theta
$$

$$
\therefore z+\frac{1}{z}=2 \cos \theta \Rightarrow \cos \theta=\frac{z^{2}+1}{2 z}
$$

Now,

$$
\begin{aligned}
& \int_{C} \frac{1}{1-2 a\left(\frac{z^{2}+1}{2 z}\right)+a^{2}} \cdot \frac{d z}{i z} \\
& \quad=\frac{1}{i} \int_{C} \frac{1}{1-\frac{a z^{2}-a}{z}+a^{2}} \cdot \frac{d z}{z}=\frac{1}{i} \int_{C} \frac{1}{z-a z^{2}-a+a z^{2}} d z \\
& \quad=\frac{1}{i} \int_{C} \frac{1}{(z-a)(1-a z)} d z
\end{aligned}
$$

Here,
$f(z)=\frac{1}{(z-a)(1-a z)}, \quad z_{0}=a \in C$ and $z_{0}=\frac{1}{a}$ does not belongs to C
For $\mathrm{z}_{0}=\mathrm{a}$ is first order pole.
Residue of $f(z)$ at $z_{0}=a$
$k_{1}=\lim _{z \rightarrow z_{0}} f(z)\left(z-z_{0}\right)=\lim _{z \rightarrow a} \frac{1}{(z-a)(1-a z)} \cdot(z-a)=\frac{1}{1-a^{2}}$
Therefore, By Cauchy residue theorem,

$$
\int_{0}^{2 \pi} \frac{1}{1-2 a \cos \theta+a^{2}} d \theta=2 \pi i\left(k_{1}\right) \cdot \frac{1}{i}=\frac{2 \pi i}{i}\left(\frac{1}{1-a^{2}}\right)=\frac{2 \pi}{1-a^{2}}
$$

EXAMPLE-18:

Evaluate

$$
\int_{0}^{\pi} \frac{1}{(2+\cos \theta)^{2}} d \theta
$$

SOLUTION:

We know that
$\cos \theta=\frac{z^{2}+1}{2 z}, \quad d \theta=\frac{d z}{i z}$
Now,
$\int_{C} \frac{1}{\left(2+\left(\frac{z^{2}+1}{2 z}\right)\right)^{2}} \cdot \frac{d z}{i z}=\frac{1}{i} \int_{C} \frac{1}{\left(\frac{4 z+z^{2}+1}{2 z}\right)^{2}} \cdot \frac{d z}{z}=\frac{1}{i} \int_{C} \frac{4 z}{\left(z^{2}+4 z+1\right)^{2}} d z$
$z_{0}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-4 \pm \sqrt{16-4(1)(1)}}{2}=\frac{-4 \pm 2 \sqrt{3}}{2}=-2 \pm \sqrt{3}$
$z_{0}=-2+\sqrt{3} \in C$ and $z_{0}=-2-\sqrt{3}$ does not belongs to C
For $z_{0}=-2+\sqrt{3}$ is second order pole.
$k_{1}=\frac{\emptyset^{m-1}\left(z_{0}\right)}{(m-1)!}=\emptyset^{\prime}(-2+\sqrt{3})$
Now,

$$
\begin{aligned}
& \begin{array}{l}
\emptyset(z)=\left(z-z_{0}\right)^{m} \cdot f(z)=(z+2-\sqrt{3})^{2} \cdot \frac{4 z}{(z+2-\sqrt{3})^{2}(z+2+\sqrt{3})^{2}} \\
=\frac{4 z}{(z+2+\sqrt{3})^{2}}
\end{array} \\
& \begin{array}{c}
\emptyset^{\prime}(z)=\frac{\left[(z+2+\sqrt{3})^{2} \cdot 4-4 z(2(z+2+\sqrt{3}) \cdot 1)\right]}{(z+2+\sqrt{3})^{4}} \\
\therefore \emptyset^{\prime}(-2+\sqrt{3})=\frac{4\left[(-2+\sqrt{3}+2+\sqrt{3})^{2}-2(-2+\sqrt{3})(-2+\sqrt{3}+2+\sqrt{3})\right]}{(-2+\sqrt{3}+2+\sqrt{3})^{4}} \\
\quad=\frac{4[12-2(-2+\sqrt{3})(2 \sqrt{3})]}{144}=\frac{16}{144}[3-(-2 \sqrt{3}+3)] \\
\quad=\frac{1}{9}[3+2 \sqrt{3}-3]=\frac{2 \sqrt{3}}{9}
\end{array}
\end{aligned}
$$

By equation (i), $k_{1}=\frac{2 \sqrt{3}}{9}$
$\therefore \int_{0}^{\pi} \frac{1}{(2+\cos \theta)^{2}} d \theta=\pi i\left(k_{1}\right) \cdot \frac{1}{i}=\frac{\pi i}{i}\left(\frac{2 \sqrt{3}}{9}\right)=\frac{2 \pi}{3 \sqrt{3}}$
Prepared by: Ms.Renuka Dabhi |MATHS/Sem-6/P-601/Unit-5|
|RESIDUE \& POLES |

EXAMPLE-19:

Prove that
$\int_{0}^{2 \pi} \frac{\cos 2 \theta}{5+4 \cos \theta} d \theta=\frac{\pi}{6}$

SOLUTION:

We know that
$\cos \theta=\frac{z^{2}+1}{2 z}, \quad d \theta=\frac{d z}{i z}$

$$
\cos 2 \theta=\frac{z^{2}+z^{-2}}{2}=\frac{z^{2}+1 / z^{2}}{2}=\frac{z^{4}+1}{2 z^{2}}
$$

Now,

$$
\begin{aligned}
& \int_{C} \frac{\left(\frac{z^{4}+1}{2 z^{2}}\right)}{5+4\left(\frac{z^{2}+1}{2 z}\right)} \cdot \frac{d z}{i z}=\frac{1}{i} \int_{C} \frac{z^{4}+1 / 2 z^{2}}{\left(\frac{10 z+4 z^{2}+4}{2 z}\right)} \cdot d z \\
& =\frac{1}{i} \int_{C} \frac{z^{4}+1}{z^{2}\left(4 z^{2}+10 z+4\right)} d z=\frac{1}{i} \int_{C} \frac{z^{4}+1}{z^{2}(z+2)(4 z+2)} d z \\
& z_{0}=0, z_{0}=-2, z_{0}=-\frac{1}{2} \\
& z_{0}=0,-\frac{1}{2} \in C \text { and } z_{0}=-2 \text { does not belongs to } C
\end{aligned}
$$

For $z_{0}=0$ is second order pole.
$k_{1}=\frac{\emptyset^{m-1}\left(z_{0}\right)}{(m-1)!}=\emptyset^{\prime}(0)$
Now,
$\emptyset(z)=\left(z-z_{0}\right)^{m} f(z)=z^{2} \cdot \frac{z^{4}+1}{z^{2}(z+2)(4 z+2)}=\frac{z^{4}+1}{4 z^{2}+10 z+4}$
$\phi^{\prime}(z)=\frac{\left[\left(4 z^{2}+10 z+4\right) \cdot 4 z^{3}-\left(z^{4}+1\right)(8 z+10)\right]}{\left(4 z^{2}+10 z+4\right)^{2}}$
$\therefore \phi^{\prime}(0)=\frac{[0-(1)(10)]}{16}=-\frac{10}{16}=-\frac{5}{8}$
By equation (i), $k_{1}=-\frac{5}{8}$
For $z_{0}=-\frac{1}{2}$ is first order pole.
Residue of $f(z)$ at $z_{0}=-\frac{1}{2}$

$$
\begin{aligned}
k_{2}=\lim _{z \rightarrow z_{0}}(z & \left.-z_{0}\right) f(z) \\
& =\lim _{z \rightarrow-\frac{1}{2}}\left(z+\frac{1}{2}\right) \cdot \frac{z^{4}+1}{z^{2}(z+2)(4 z+2)} \\
& =\lim _{z \rightarrow-\frac{1}{2}}\left(z+\frac{1}{2}\right) \cdot \frac{z^{4}+1}{z^{2}(z+2) 4\left(z+\frac{1}{2}\right)}=\left[\frac{1 / 16+1}{1 / 4(3 / 2) \cdot 4}\right]=\frac{17}{24}
\end{aligned}
$$

By Cauchy Residue theorem,

$$
\int_{0}^{2 \pi} \frac{\cos 2 \theta}{5+4 \cos \theta} d \theta=2 \pi i\left(k_{1}+k_{2}\right) \cdot \frac{1}{i}=\frac{2 \pi i}{i}\left[-\frac{5}{8}+\frac{17}{24}\right]=2 \pi\left[\frac{2}{24}\right]=\frac{\pi}{6}
$$

EXAMPLE-20:

Show that
$\int_{0}^{2 \pi} \frac{\sin ^{2} \theta}{a+b \cos \theta} d \theta=\frac{2 \pi}{b^{2}}\left(a-b \sqrt{a^{2}-b^{2}}\right) ; \quad(a>b)$

SOLUTION:

Let C is unit circle.
We know that,
$z=e^{i \theta}$
$d z=e^{i \theta} \cdot i d \theta \Rightarrow d \theta=\frac{d z}{i z}$
And
$\cos \theta=\frac{z^{2}+1}{2 z}, \quad \sin \theta=\frac{z^{2}-1}{2 i z}$
Now,

$$
\begin{aligned}
& \int_{C} \frac{\left(\frac{z^{2}-1}{2 i z}\right)^{2}}{a+b\left(\frac{z^{2}+1}{2 z}\right)} \cdot \frac{d z}{i z} \\
& \quad=\frac{1}{i} \int_{C} \frac{\left(z^{2}-1\right)^{2} /-4 z^{2}}{\frac{2 a z+b z^{2}+b}{2 z}} \cdot \frac{d z}{z}=-\frac{1}{2 i} \int_{C} \frac{\left(z^{2}-1\right)^{2}}{z^{2}\left(b z^{2}+2 a z+b\right)} d z
\end{aligned}
$$

For pole $z^{2}=0 \& b z^{2}+2 a z+b=0$

$$
\begin{aligned}
& z_{0}=0 \& z_{0}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-2 a \pm \sqrt{4 a^{2}-4 b^{2}}}{2 b}=\frac{-a \pm \sqrt{a^{2}-b^{2}}}{b} \\
& \therefore z_{0}=0 \& z_{0}=\frac{-a+\sqrt{a^{2}-b^{2}}}{b} \\
& \quad \in C \text { but } \frac{-a-\sqrt{a^{2}-b^{2}}}{b} \text { does not belongs to } C ;(\because a>b)
\end{aligned}
$$

For $z_{0}=0$ is $2^{\text {nd }}$ order pole.
$k_{1}=\frac{\emptyset^{m-1}\left(z_{0}\right)}{(m-1)!}=\emptyset^{\prime}(0)$
Now,
$\emptyset(z)=\left(z-z_{0}\right)^{m} f(z)=z^{2} \cdot \frac{\left(z^{2}-1\right)^{2}}{z^{2}\left(b z^{2}+2 a z+b\right)}=\frac{\left(z^{2}-1\right)^{2}}{\left(b z^{2}+2 a z+b\right)}$
$\therefore \phi^{\prime}(z)=\frac{\left[\left(b z^{2}+2 a z+b\right) \cdot 2\left(z^{2}-1\right) \cdot 2 z-\left(z^{2}-1\right)^{2}(2 b z+2 a)\right]}{\left(b z^{2}+2 a z+b\right)^{2}}$
$\therefore \emptyset^{\prime}(0)=\frac{0-(-1)^{2}(2 a)}{b^{2}}=-\frac{2 a}{b^{2}}$
By equation (i), $k_{1}=-\frac{2 a}{b^{2}}$
For $z_{0}=\frac{-a+\sqrt{a^{2}-b^{2}}}{b}$ is first order pole.
Residue of $f(z)$ at z_{0},

$$
\begin{aligned}
& k_{2}=\lim _{z \rightarrow \frac{-a+\sqrt{a^{2}-b^{2}}}{b}} \frac{\left(\frac{z+a-\sqrt{a^{2}-b^{2}}}{b}\right) \cdot\left(z^{2}-1\right)^{2}}{z^{2} \cdot\left(\frac{z+a-\sqrt{a^{2}-b^{2}}}{b}\right)\left(\frac{z+a+\sqrt{a^{2}-b^{2}}}{b}\right)} \\
&=\frac{\left[\left(\frac{-a+\sqrt{a^{2}-b^{2}}}{b}\right)^{2}-1\right]^{2}}{\left(\frac{-a+\sqrt{a^{2}-b^{2}}}{b}\right)^{2}\left(\frac{-a+\sqrt{a^{2}-b^{2}}}{b}+\frac{a+\sqrt{a^{2}-b^{2}}}{b}\right)} \\
&=\frac{\frac{\left(a^{2}-2 a \sqrt{a^{2}-b^{2}}+a^{2}-b^{2}-b^{2}\right)^{2}}{b^{4}}}{b^{2}} \\
&= \frac{\frac{\left(-a+\sqrt{a^{2}-b^{2}}\right)^{2}}{b^{2}} \cdot \frac{\left(2 a^{2}-2 a \sqrt{a^{2}-b^{2}}-2 b^{2}\right)^{2}}{b^{4}}}{\frac{2\left(-a+\sqrt{a^{2}-b^{2}}\right)^{2}\left(\sqrt{a^{2}-b^{2}}\right)}{b^{3}}} \\
&= \frac{4}{2 b}\left[\frac{\left(a^{2}-a \sqrt{a^{2}-b^{2}}-b^{2}\right)^{2}}{\left(\sqrt{a^{2}-b^{2}}\right)\left(-a+\sqrt{a^{2}-b^{2}}\right)^{2}}\right] \\
&=\frac{2}{b}\left\{\frac{\left[\left(\sqrt{a^{2}-b^{2}}\right)\left(\sqrt{a^{2}-b^{2}}-a\right)\right]^{2}}{\left(\sqrt{a^{2}-b^{2}}\right)\left(\sqrt{a^{2}-b^{2}}-a\right)^{2}}\right\} \\
&= \frac{2}{b}\left[\frac{\left(\sqrt{a^{2}-b^{2}}\right)^{2}\left(\sqrt{a^{2}-b^{2}}-a\right)^{2}}{\left(\sqrt{a^{2}-b^{2}}\right)\left(\sqrt{a^{2}-b^{2}}-a\right)^{2}}\right]=\frac{2}{b}\left(\sqrt{a^{2}-b^{2}}\right)
\end{aligned}
$$

By Cauchy Residue theorem,

$$
\begin{aligned}
& \therefore \frac{-1}{2 i} \int_{C} \frac{\left(z^{2}-1\right)^{2}}{z^{2}\left(b z^{2}+2 a z+b\right)} d z=\frac{-1}{2 i} \cdot 2 \pi i\left[k_{1}+k_{2}\right] \\
& \quad=-\pi\left[\frac{-2 a}{b^{2}}+\frac{2}{b}\left(\sqrt{a^{2}-b^{2}}\right)\right]=\frac{2 \pi}{b^{2}}\left(a-b \sqrt{a^{2}-b^{2}}\right)
\end{aligned}
$$

EXAMPLE-21:

Prove that
$\int_{0}^{2 \pi} \frac{\cos 2 \theta}{1-2 P \cos \theta+P^{2}} d \theta=\frac{2 \pi P^{2}}{1-P^{2}} ; \quad(0<P<1)$

SOLUTION:

Let C is unit circle.
We know that,
$d \theta=\frac{d z}{i z}, \quad \cos \theta=\frac{z^{2}+1}{2 z}, \quad \cos 2 \theta=\frac{z^{4}+1}{2 z^{2}}$
Now,

$$
\begin{aligned}
& \int_{C} \frac{\left(\frac{z^{4}+1}{2 z^{2}}\right)}{1-2 P\left(\frac{z^{2}+1}{2 z}\right)+P^{2}} \cdot \frac{d z}{i z}=\frac{1}{2 i} \int_{C} \frac{\left(\frac{z^{4}+1}{z^{3}}\right)}{\frac{2 z-2 P z^{2}-2 P+2 P^{2} z}{2 z}} d z \\
& =\frac{1}{2 i} \int_{C} \frac{z^{4}+1}{z^{2}\left(z-P z^{2}-P+P^{2} z\right)} d z=\frac{1}{2 i} \int_{C} \frac{z^{4}+1}{z^{2}(z-P)(1-P z)} d z
\end{aligned}
$$

For pole $z^{2}(z-P)(1-P z) \Rightarrow z_{0}=0, P, \frac{1}{P}$
$z_{0}=0$ and $z_{0}=P \in C \& z_{0}=\frac{1}{P}$ does not belongs to C.
For $\mathrm{z}_{0}=0$ is $2^{\text {nd }}$ order pole.

$$
\begin{equation*}
k_{1}=\frac{\emptyset^{m-1}\left(z_{0}\right)}{(m-1)!}=\emptyset^{\prime}(0) \tag{i}
\end{equation*}
$$

Now,

$$
\begin{aligned}
& \emptyset(z)=\left(z-z_{0}\right)^{m} f(z)=z^{2} \cdot \frac{z^{4}+1}{z^{2}(z-P)(1-P z)}=\frac{z^{4}+1}{\left(z-P z^{2}-P+P^{2} z\right)} \\
& \therefore \emptyset^{\prime}(z)=\frac{\left[\left(z-P z^{2}-P+P^{2} z\right)\left(4 z^{3}\right)-\left(z^{4}+1\right)\left(1-2 P z+P^{2}\right)\right]}{\left(z-P z^{2}-P+P^{2} z\right)^{2}} \\
& \therefore \emptyset^{\prime}(0)=\frac{\left[0-(1)\left(1+P^{2}\right)\right]}{P^{2}}=\frac{-1-P^{2}}{P^{2}}
\end{aligned}
$$

By equation (i), $k_{1}=\frac{-1-P^{2}}{P^{2}}$
$Z_{0}=P$ is first order pole.
Residue of $f(z)$ at $z_{0}=P$,

$$
k_{2}=\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) f(z)=\lim _{z \rightarrow P}(z-P) \cdot \frac{z^{4}+1}{z^{2}(z-P)(1-P z)}=\frac{P^{4}+1}{P^{2}\left(1-P^{2}\right)}
$$

By Cauchy residue theorem,

$$
\begin{gathered}
\int_{0}^{2 \pi} \frac{\cos 2 \theta}{1-2 P \cos \theta+P^{2}} d \theta=2 \pi i\left[k_{1}+k_{2}\right] \cdot \frac{1}{2 i}=\frac{2 \pi i}{2 i}\left[\frac{-1-P^{2}}{P^{2}}+\frac{P^{4}+1}{P^{2}\left(1-P^{2}\right)}\right] \\
=\pi\left[\frac{\left(-1-P^{2}\right)\left(1-P^{2}\right)+P^{4}+1}{P^{2}\left(1-P^{2}\right)}\right] \\
=\pi\left[\frac{-1+P^{2}-P^{2}+P^{4}+P^{4}+1}{P^{2}\left(1-P^{2}\right)}\right]=\frac{\pi \cdot 2 P^{4}}{P^{2}\left(1-P^{2}\right)}=\frac{2 \pi P^{2}}{1-P^{2}}
\end{gathered}
$$

EXAMPLE-22:

Prove that
$\int_{0}^{\pi} \frac{a}{a^{2}+\sin ^{2} \theta} d \theta=\frac{\pi}{\sqrt{1+a^{2}}} ; \quad(a>1)$

SOLUTION:

We know that,
$\sin \theta=\frac{z^{2}-1}{2 i z}, d \theta=\frac{d z}{i z}$
Now,

$$
\begin{aligned}
& \int_{C} \frac{a}{a^{2}+\left(\frac{z^{2}-1}{2 i z}\right)^{2}} \cdot \frac{d z}{i z} \\
&=\frac{a}{i} \int_{C} \frac{1}{a^{2}-\frac{\left(z^{2}-1\right)^{2}}{4 z^{2}}} \cdot \frac{d z}{z} \\
&=\frac{a}{i} \int_{C} \frac{4 z}{4 a^{2} z^{2}-\left(z^{2}-1\right)^{2}} d z \\
&=\frac{4 a}{i} \int_{C} \frac{z}{\left(2 a z-z^{2}+1\right)\left(2 a z+z^{2}-1\right)} d z \\
&=-\frac{4 a}{i} \int_{C} \frac{z}{\left(z^{2}-2 a z-1\right)\left(z^{2}+2 a z-1\right)} d z
\end{aligned}
$$

For pole $\left(z^{2}-2 a z-1\right)\left(z^{2}+2 a z-1\right)$
$\therefore z_{0}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{2 a \pm \sqrt{4 a^{2}+4}}{2}=a \pm \sqrt{a^{2}+1}$
$\therefore z_{0}=a+\sqrt{a^{2}+1}$ and $z_{0}=a-\sqrt{a^{2}+1}$

SHREE H.N.SHUKLA COLLEGE OF SCIENCE

Now,
$z_{0}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-2 a \pm \sqrt{4 a^{2}+4}}{2}=-a \pm \sqrt{a^{2}+1}$
$\therefore z_{0}=a-\sqrt{a^{2}+1} \& z_{0}=-a+\sqrt{a^{2}+1} \in C$ and $z_{0}=-a-\sqrt{a^{2}+1} \& z_{0}$ $=a+\sqrt{a^{2}+1}$ does not belongs to C

For $z_{0}=a-\sqrt{a^{2}+1}$ is first order pole.
Residue of $\mathrm{f}(\mathrm{z})$ at $z_{0}=a-\sqrt{a^{2}+1}$
k_{1}
$=\lim _{z \rightarrow a-\sqrt{a^{2}+1}}\left(z-a+\sqrt{a^{2}+1}\right)$
$\cdot \frac{z}{\left(z-a+\sqrt{a^{2}+1}\right)\left(z+a-\sqrt{a^{2}+1}\right)\left(z-a-\sqrt{a^{2}+1}\right)\left(z+a+\sqrt{a^{2}+1}\right)}$

$$
\begin{aligned}
& =\frac{a-\sqrt{a^{2}+1}}{\left(a-\sqrt{a^{2}+1}-a-\sqrt{a^{2}+1}\right)\left(a-\sqrt{a^{2}+1}+a-\sqrt{c}\right.} \\
& =\frac{a-\sqrt{a^{2}+1}}{\left(-2 \sqrt{a^{2}+1}\right)\left(2 a-2 \sqrt{a^{2}+1}\right)(2 a)}=-\frac{1}{8 a \sqrt{a^{2}+1}}
\end{aligned}
$$

$$
=\overline{\left(a-\sqrt{a^{2}+1}-a-\sqrt{a^{2}+1}\right)\left(a-\sqrt{a^{2}+1}+a-\sqrt{a^{2}+1}\right)\left(a-\sqrt{a^{2}+1}+a+\sqrt{a^{2}}\right.}
$$

For $z_{0}=-a+\sqrt{a^{2}+1}$ is first order pole.
k_{2}

$$
\begin{aligned}
& =\lim _{z \rightarrow-a+\sqrt{a^{2}+1}}\left(z+a-\sqrt{a^{2}+1}\right) \\
& \cdot \frac{z}{\left(z+a-\sqrt{a^{2}+1}\right)\left(z+a+\sqrt{a^{2}+1}\right)\left(z-a+\sqrt{a^{2}+1}\right)\left(z-a-\sqrt{a^{2}+1}\right)} \\
& =\frac{-a+\sqrt{a^{2}+1}}{\left(2 \sqrt{a^{2}+1}\right)\left(-2 a+2 \sqrt{a^{2}+1}\right)(-2 a)}=-\frac{1}{8 a \sqrt{a^{2}+1}}
\end{aligned}
$$

By Cauchy residue theorem, we get

$$
\begin{gathered}
\int_{0}^{\pi} \frac{a}{a^{2}+\sin ^{2} \theta} d \theta=-\frac{4 a}{i} \cdot \pi i\left[k_{1}+k_{2}\right]=-4 a \pi\left[-\frac{1}{8 a \sqrt{a^{2}+1}}-\frac{1}{8 a \sqrt{a^{2}+1}}\right] \\
=\frac{8 a \pi}{8 a \sqrt{a^{2}+1}}=\frac{\pi}{\sqrt{a^{2}+1}}
\end{gathered}
$$

EXERCISE-C

Find the residue of following functions:

1) $\int_{0}^{2 \pi} \frac{d \theta}{\cos \theta+2}=\frac{2 \pi}{\sqrt{3}}$
2) $\int_{0}^{2 \pi} \frac{d \theta}{5+4 \cos \theta}=\frac{2 \pi}{3}$
3) $\int_{0}^{2 \pi} \frac{d \theta}{1+\cos \theta}=\frac{2 \pi}{\sqrt{1-a^{2}}} ;-1<a<1$
4) $\int_{0}^{2 \pi} \frac{\cos 3 \theta d \theta}{5-4 \cos \theta}=\frac{\pi}{12}$

\& Evaluation of improper real integrals:

$$
\int_{-\infty}^{\infty} F(x) d x=\lim _{R \rightarrow \infty}
$$

 where C_{R} is upper half of circle $C:|z|=R$

Now,
When $\mathrm{R} \rightarrow \infty$ then $\int_{C_{R}} f(x) d x=0$
$\therefore \int_{-\infty}^{\infty} f(x) d x=\lim _{R \rightarrow \infty} \int_{-R}^{R} f(x) d x=2 \pi i\left(k_{1}+k_{2}+\ldots \ldots \ldots \ldots+k_{n}\right)$
Where $k_{1}, k_{2}, \ldots, k_{n}$ are residue of $f(x)$ at poles.

EXAMPLE-23:

Evaluate:
$\int_{-\infty}^{\infty} \frac{d x}{(x+1)\left(x^{2}+2\right)}$

SOLUTION:

Let
$\int_{-\infty}^{\infty} \frac{d x}{(x+1)\left(x^{2}+2\right)}=\int_{-\infty}^{\infty} \frac{d z}{(z+1)\left(z^{2}+2\right)}$
For pole $(z+1)\left(z^{2}+2\right) \Rightarrow z_{0}=-1, z_{0}= \pm \sqrt{2}$
$z_{0}=-1, \sqrt{2} i \in C$ and $z_{0}=-\sqrt{2} i$ does not belongs to C
For $z_{0}=-1$ is first order pole.

$$
k_{1}=\lim _{z \rightarrow-1}(z+1) \cdot \frac{1}{(z+1)\left(z^{2}+2\right)}=\frac{1}{3}
$$

For $z_{0}=\sqrt{2} i$ is first order pole.

$$
\begin{aligned}
& k_{2}=\lim _{z \rightarrow \sqrt{2} i}(z-\sqrt{2} i) \cdot \frac{1}{(z+1)(z-\sqrt{2} i)(z+\sqrt{2} i)}=\frac{1}{(\sqrt{2} i+1)(2 \sqrt{2} i)} \\
&=\frac{1}{-4+2 \sqrt{2} i}=\frac{1}{2 \sqrt{2} i-4} \times \frac{2 \sqrt{2} i+4}{2 \sqrt{2} i+4}=\frac{2 \sqrt{2} i+4}{-8-16}=\frac{\sqrt{2} i+2}{(-12)}
\end{aligned}
$$

By Cauchy residue theorem,

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \frac{d z}{(z+1)\left(z^{2}+2\right)}=2 \pi i\left[k_{1}+k_{2}\right]=2 \pi i\left[\frac{1}{3}+\frac{\sqrt{2} i+2}{(-12)}\right]=\frac{2 \pi i}{3}\left[1-\frac{(\sqrt{2} i+2)}{4}\right] \\
& =\frac{2 \pi i}{3}\left[\frac{4-\sqrt{2} i-2}{4}\right]=\frac{\pi i}{6}(2-\sqrt{2} i) \\
& \therefore \int_{-\infty}^{\infty} \frac{d x}{(x+1)\left(x^{2}+2\right)}=\frac{\pi i}{6}(2-\sqrt{2} i)
\end{aligned}
$$

EXAMPLE-24:

Evaluate:

$$
\int_{-\infty}^{\infty} \frac{x^{2}}{\left(x^{2}+1\right)\left(x^{2}+4\right)} d x
$$

SOLUTION:

Let
$\int_{-\infty}^{\infty} \frac{x^{2}}{\left(x^{2}+1\right)\left(x^{2}+4\right)} d x=\int_{-\infty}^{\infty} \frac{z^{2}}{\left(z^{2}+1\right)\left(z^{2}+4\right)} d z$
For pole $\left(z^{2}+1\right)\left(z^{2}+4\right) \Rightarrow z_{0}= \pm i, z_{0}= \pm 2 i$
$z_{0}=i$ and $2 i \in C$ and $z_{0}=-i$ and $-2 i$ does not belongs to C
For $z_{0}=i$ is first order pole.

$$
\begin{aligned}
& k_{1}=\lim _{z \rightarrow i}(z-i) \cdot \frac{z^{2}}{(z-i)(z+i)(z+2 i)(z-2 i)}=\frac{i^{2}}{(2 i)(3 i)(-i)}=\frac{-1}{-6(-i)} \\
& =-\frac{1}{6 i}
\end{aligned}
$$

For $Z_{0}=2 i$ is first order pole.

$$
k_{2}=\lim _{z \rightarrow 2 i}(z-2 i) \cdot \frac{z^{2}}{(z-i)(z+i)(z+2 i)(z-2 i)}=\frac{4 i^{2}}{(3 i)(i)(4 i)}=\frac{-4}{-12 i}=\frac{1}{3 i}
$$

By Cauchy residue theorem,

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \frac{z^{2}}{\left(z^{2}+1\right)\left(z^{2}+4\right)} d z=2 \pi i\left[k_{1}+k_{2}\right]=2 \pi i\left[-\frac{1}{6 i}+\frac{1}{3 i}\right]=\frac{2 \pi i}{3 i}\left[-\frac{1}{2}+1\right] \\
& \quad=\frac{2 \pi}{3}\left[\frac{1}{2}\right]=\frac{\pi}{3} \\
& \therefore \int_{-\infty}^{\infty} \frac{x^{2}}{\left(x^{2}+1\right)\left(x^{2}+4\right)} d x=\frac{\pi}{3}
\end{aligned}
$$

EXAMPLE-25:

Evaluate:

$$
\int_{-\infty}^{\infty} \frac{x^{2}+x+3}{x^{4}+5 x^{2}+4} d x
$$

SOLUTION:

Let

$$
\int_{-\infty}^{\infty} \frac{x^{2}+x+3}{x^{4}+5 x^{2}+4} d x=\int_{-\infty}^{\infty} \frac{z^{2}+z+3}{z^{4}+5 z^{2}+4} d z
$$

For pole

$$
\begin{gathered}
z^{4}+5 z^{2}+4=0 \Rightarrow z^{4}+z^{2}+4 z^{2}+4=0 \Rightarrow z^{2}\left(z^{2}+1\right)+4\left(z^{2}+1\right)=0 \\
\left(z^{2}+1\right)\left(z^{2}+4\right)=0 \\
\therefore z_{0}= \pm i \text { and } z_{0}= \pm 2 i
\end{gathered}
$$

$$
z_{0}=i \& 2 i \in C \text { and } z_{0}=-i \&-2 i \text { does not belongs to } C
$$

For $z_{0}=i$ is first order pole.

$$
k_{1}=\lim _{z \rightarrow i}(z-i) \cdot \frac{z^{2}+z+3}{(z-i)(z+i)(z+2 i)(z-2 i)}=\frac{i^{2}+i+3}{(2 i)(3 i)(-i)}=\frac{2+i}{6 i}
$$

For $z_{0}=2 i$ is first order pole.

$$
\begin{aligned}
& k_{2}=\lim _{z \rightarrow 2 i}(z-2 i) \cdot \frac{z^{2}+z+3}{(z-i)(z+i)(z+2 i)(z-2 i)}=\frac{4 i^{2}+2 i+3}{(i)(3 i)(4 i)}=\frac{2 i-1}{-12 i} \\
&=\frac{1-2 i}{12 i}
\end{aligned}
$$

By Cauchy residue theorem,

$$
\begin{aligned}
\int_{-\infty}^{\infty} \frac{z^{2}+z+3}{z^{4}+5 z^{2}+4} d z=2 \pi i\left[k_{1}+k_{2}\right] & =2 \pi i\left[\frac{2+i}{6 i}+\frac{1-2 i}{12 i}\right] \\
=\frac{2 \pi i}{6 i}\left[2+i+\frac{1-2 i}{2}\right]= & \frac{\pi}{6}[4+2 i+1-2 i]=\frac{5 \pi}{6}
\end{aligned}
$$

$$
\therefore \int_{-\infty}^{\infty} \frac{x^{2}+x+3}{x^{4}+5 x^{2}+4} d x=\frac{5 \pi}{6}
$$

EXAMPLE-25:

Evaluate:

$$
\int_{0}^{\infty} \frac{\sin m x}{x} d x ; m>0
$$

SOLUTION:

Let

$$
\int_{0}^{\infty} \frac{\sin m x}{x} d x=\int_{0}^{\infty} \frac{\sin m z}{z} d z
$$

Now, we take

$$
\int_{0}^{\infty} \frac{e^{i m z}}{z} d z
$$

For pole $\mathrm{z}=0 \Rightarrow \mathrm{z}_{0}=0$
$z_{0}=0$ is first order pole.

$$
k_{1}=\lim _{z \rightarrow 0}(z-0) \cdot \frac{e^{i m z}}{z}=e^{i m(0)}=1
$$

By Cauchy residue theorem,

$$
\int_{0}^{\infty} \frac{e^{i m z}}{z} d z=\pi i\left(k_{1}\right)
$$

$$
\begin{gathered}
\therefore \int_{0}^{\infty} \frac{\cos m z+i \sin m z}{z} d z=\pi i \\
\therefore \int_{0}^{\infty} \frac{\cos m z}{z} d z+i \int_{0}^{\infty} \frac{\sin m z}{z} d z=0+\pi i
\end{gathered}
$$

Compare the real \& imaginary part, we get

$$
\int_{0}^{\infty} \frac{\cos m z}{z} d z=0 \& \int_{0}^{\infty} \frac{\sin m z}{z}=\pi
$$

EXERCISE-D

1) $\int_{0}^{\infty} \frac{d x}{x^{2}+1}=\frac{\pi}{2}$
2) $\int_{-\infty}^{\infty} \frac{d x}{\left(1+x^{2}\right)^{2}}=\frac{\pi}{2}$
3) $\int_{0}^{\infty} \frac{d x}{x^{4}+1}=\frac{\pi}{2 \sqrt{2}}$
4) $\int_{0}^{\infty} \frac{x^{2}}{\left(x^{2}+9\right)\left(x^{2}+4\right)^{2}}=\frac{\pi}{200}$
5) $\int_{0}^{\infty} \frac{d x}{\left(x^{2}+a^{2}\right)^{2}}=\frac{\pi}{4 a^{3}} ; a>0$
