SHREE H. N. SHUKLA GROUP OF COLLEGES

M.Sc. (Mathematics) Semester-4

IMP Questions of Integration Theory

 State and prove Hahn decomposition theorem. Define Jordan decomposition of a signed measure on a measurable space and prove that it is unique. If μ₁,μ₂ are two measures on a measurable space (X, A)

and at least one of them is finite then prove that $\mu_1 - \mu_2$ is a signed measure on (X, \mathcal{A}) .

- 3. Prove that if (X, A) is a measurable space and $f: X \to [0, \infty]$ be measurable then there exists a sequence $\{S_n\}_{n=1}^{\infty}$ of simple measurable function such that
 - (i) $0 \le S_1 \le S_2 \le \cdots \le S_n \ldots \le f; \text{ on } X.$
 - (ii) $\lim_{n\to\infty} S_n = f(x); \forall x \in X.$

If X is a locally compact separable metric space then prove that Bo(X) = Ba(X).

4. Define Baire measure on the real line. Prove that the cumulative distribution function "F" of a finite signed measure on the real line is bdd, monotonically increasing

and $\lim_{x \to -\infty} f(x) = 0$.

- 5. Prove that if X be a countable set and μ be the counting measure then $L^{P}(\mu) \cong l^{P}; \forall 1 \leq P < \infty$.
- 6. Define σ -compact set in a locally compact Hausdorff space. Prove that every σ -compact open set in a locally compact Hausdorff space is a Baire set.
- ^{7.} Give an example of baire measure on a locally compact Hausdorff space which is not regular. Justify.

SHREE H. N. SHUKLA GROUP OF COLLEGES

M.Sc. (Mathematics) Semester-4

IMP Questions of Integration Theory

- 8. State, without proof, Caratheodary extension theorem. Give an example to show that σ -finite assumption in the theorem cannot be dropped.
- ^{9.} State, without proof, Fubim's theorem and Tonelli's theorem.
- 10. If μ, γ are measures on a measurable space then with usual notation prove that $\mu \ll \gamma$ and $\mu \perp \gamma \Rightarrow \mu = 0$. Does $\mu \ll \gamma \Rightarrow \gamma \ll \mu$? Justify.
- 11. If μ is a measure on an algebra \mathcal{T} of subsets of a set X and μ^* is the outer measure on X induced by μ then prove that every $E \in \mathcal{T}$ is μ^* -measurable.
- 12. Give an example of a compact Hausdorff space X

st $Ba(X) \underset{\mp}{\subset} Bo(X)$.

- 13. State and prove Hahn Decomposition theorem.
- 14. State and prove Jordan Composition theorem.
- 15. State and prove Radon-Nikodyan theorem for signed measure.
- 16. Prove that Hahn Decomposition is unique except null sets.
- 17. Prove that countable union of positive sets is positive and countable union of negative sets is negative.
- 18. Define L^p space. Prove Riesz-Fisher theorem for $L^p(\mu), 1 \le p < \infty$.