
Shree H. N. Shukla College of It. & Mgmt.
(Affiliated To Saurashtra University)

MSCIT SEM-2 REACTJS

Shree H.N.Shukla college2

vaishali nagar

Near Amrapali Under Bridge,

Raiya road

Rajkot

Ph No:-0281 2440478

Shree H.N.Shukla college3

vaishali nagar

Near Amrapali Under Bridge,

Raiya road

Rajkot

Ph No:-0281 2440478

Shree H. N. Shukla College of It. & Mgmt.
(Affiliated To Saurashtra University)

Unit : 1
 Express JS & Java Script

 Java Script

 Java Script Overview & Basics

 Variable, Conditional Statements, Loops in JS,

 Functions, Arrays & Events in JS

 ES6 Overview & Basics

 ES6 Classes, functions & Promises

 Express JS

 Setting up an app with ExpressJS, Routing in ExpressJS,

 Connecting views with templates, configurations and error handling.

 Java Script

Shree H. N. Shukla College of It. & Mgmt.
(Affiliated To Saurashtra University)

o JavaScript is the most popular scripting language on the internet, and works in
all major

o Browsers, such as Internet Explorer, Firefox, Chrome, Opera, and Safari.

o JavaScript is a language that is used to make web pages interactive.

o It runs on your user's computer and so does not require constant downloads

from yourweb site.

o JavaScript was designed to add interactivity to HTML pages.

o JavaScript is a scripting language.

o A scripting language is a lightweight programming language.

o JavaScript is usually embedded directly into HTML pages.

o JavaScript is an interpreted language (means that scripts execute without

preliminary compilation).

o Everyone can use JavaScript without purchasing a license.

o Using JavaScript user can add events on your website.

o Using JavaScript user can check the data before it is submitted to the server.

Shree H. N. Shukla College of It. & Mgmt.
(Affiliated To Saurashtra University)

 How to write JavaScript code into html page?
o The HTML <script> tag is used to insert a JavaScript into an HTML page.

o Inside <script> tag type attribute is used to specify the scripting language.

o JavaScript can write into two sections either between <HEAD> tag or

between <BODY>tag.

o If user writes code in <body> section then JavaScript code will be executed

immediatelyafter the page has been load.

o If user writes code in <head> section then JavaScript code will

executed depends onuser’s requirement.

Syntax:
<HTML>

<BODY>

<SCRIPT TYPE = “TEXT/JAVASCRIPT”>

. . . . Between

these

tags All

JavaScript code will Written

</SCRIPT>

</BODY>
</HTML>

You can also write like <SCRIPT LANGUAGE = “JAVASCRIPT”>

The document.write() command is used to display the messages on the

screen.

two

Shree H. N. Shukla College of It. & Mgmt.
(Affiliated To Saurashtra University)

For Example:
This code will display hello word on browser.

 1 MARKS Question – Answer

SR.NO
.

QUESTION ANSWER

1 WHAT IS JAVASCRIPT? CLIENT SIDE S CRIPTING

LANGUAGE

2 WHY WE USE JAVASCRIPT IN OUR WEBSITE? ADD CONTENT TO A

WEBPAGE DYNAMICALLY

3 WHICHTAG ISUSE TOINSERT

JAVASCRIPT CODE INHTML?

<SCRIPT> TAG

4
 IS JAVASCSRIPT IS
LIGHTWEIGHT?(YES

OR NO)

YES

5
IS JAVASCRIPT IS FREE FOR

ALL?(YES OR NO)

YES

<html>

<Body>

<script language ="JavaScript">

document.write('hello word');

</script>

</body>

</html>

Shree H. N. Shukla College of It. & Mgmt.
(Affiliated To Saurashtra University)

EXPLAIN JAVASCRIPT VARIABLES

 Variable is container for storing the information.

 Variable names are case sensitive. (x and X are two different variable).

 Variable names must be started with letter or underscore.

 To declare variable in JavaScript VAR statement is used.

 Syntax: VAR <variable name>

VARIABLE MEANS
:

“CONTAINER “–

NAME

THAT

TO

USED

STORE

VARIABLE CAN

HAVE VALUE

ADDRESS

Shree H. N. Shukla College of It. & Mgmt.
(Affiliated To Saurashtra University)

NOTE: it is not compulsory to declare variable in JavaScript before its use.

 If you assign values to variables that have not yet been declared, the

variables willautomatically be declared.

 A variable declared within a JavaScript function becomes LOCAL and can only

be accessedwithin that function. (The variable has local scope).

 You can have local variables with the same name in different functions,

because local variables are only recognized by the function in which they are

declared.

 Local variables are destroyed when you exit the function.

 Variables declared outside a function become GLOBAL, and all scripts and

functions onthe web page can access it.

 Global variables are destroyed when you close the page.

 If you declare a variable, without using "var", the variable always becomes

GLOBAL.

1 Word Question – Answer

SR.NO. QUESTION ANSWER

1 Variable is used to store different
types of

values

2 Variable can store on different Memory Location
3 Variable can have Unique Address

<Html>

<Body>

<script language = "JavaScript">

var x = 10; < ------ variable x is declared.

var y = 20; < ------ variable y is declared.

z = x+y; < --------variable z is not declared.

document.write('addition is' + z);

</script>

</body>

</html> (semicolon in JavaScript is optional)

Shree H. N. Shukla College of It. & Mgmt.
(Affiliated To Saurashtra University)

 EXPLAIN JAVASCRIPT OPERATOR

Operator means to “Operate something”.

Operator can have different Operand or Values

Operator

s

Arithmeti

c
Assignmen
t

Relationa
l

Conditiona
l

Logica

l
Increment

&

decrement

Shree H. N. Shukla College of It. & Mgmt.
(Affiliated To Saurashtra University)

ARITHMATIC OPERATOR:

o

o Arithmetic operators are used to perform arithmetic between

variables and/orvalues.

o Given that y=5, the table below explains the arithmetic operators:

Operator Description Example Resul
t

+ Addition x=y+2 x=7
- Subtraction x=y-2 x=3
* Multiplication x=y*2 x=10
/ Division x=y/2 x=2.5

% Modulus(division

remainder)

x=y%2 x=1

++ Increment x=++y x=6
-- Decrement x=--y x=4

 ASSIGNMENT OPERATOR:

o Assignment operators are used to assign values to JavaScript variables.

o Given that x=10 and y=5, the table below explains the assignment
operators:

Operato
r

Example Same As Result

= x=y x=5

+= x+=y x=x+y x=15
-= x-=y x=x-y x=5
= x=y x=x*y x=50
/= x/=y x=x/y x=2
%= x%=y x=x%y x=0

Shree H. N. Shukla College of It. & Mgmt.
(Affiliated To Saurashtra University)

COMPARISION OPERATOR:

o Comparison operators are used in logical statements to

determine equality ordifference between variables or values.

o Given that x=5, the table below explains the comparison operators:

Operator Description Example
== is equal to x==8 is false

=== is exactly equal to

(valueand type)

x===5 is true

x==="5" is

false
!= is not equal x!=8 is true
> is greater than x>8 is false

< is less than x<8 is true
>= is greater than or equal to x>=8 is false
<= is less than or equal to x<=8 is true

How Can it be Used

Comparison operators can be used in conditional statements to compare

values andtake action depending on the result:

For Example:

if(age<18)

{document.write(“Too Yong”);}

LOGICAL OPERATOR:

o Logical operators are used to determine the logic between variables or
values.

o Given that x=6 and y=3, the table below explains the logical operators:

Operator Description Example

&& and (x < 10 &&
y >1) is true

|| o

r

(x==5 ||

y==5)is false
! not !(x==y) is true

Shree H. N. Shukla College of It. & Mgmt.
(Affiliated To Saurashtra University)

CONDITIONAL OPERATORS:

o JavaScript also contains a conditional operator that assigns a value to avariable

based on some condition.

Syntax:
<Variable name> = <condition>? value1: value2

Example:
x = (y == 5)? “x is true”:”x is false”

Here if value of y is 5 then value of x = “x is true”

If value of y is not 5 then value of = “x is false”

1 Word Question – Answer

SR.NO
.

QUESTION ANSWER

1 Conditional Operator in c language can be and ? and :

2 operator can find how many

bytes anoperand can occupies

Sizeof

3 operator can used to link

relatedexpression together.

Comma

4 operator is known as assignment
operator

=(equal to)

5 If condition is false , logical operator can return 0

6 Precedence of operator is known as Hierarchy

Shree H. N. Shukla College of It. & Mgmt.
(Affiliated To Saurashtra University)

Q.4. EXPLAIN CONDITIONAL STATEMENTS

Control Structure :- “It used to control Flow of the Program”

If Statement :-

“ To check condition &

return result ”

IF types / Flavors :-

Shree H. N. Shukla College of It. & Mgmt.
(Affiliated To Saurashtra University)

Conditional statements in JavaScript are used to perform different actions

based ondifferent conditions.

 Very often when you write code, you want to perform different

actions for different decisions. You can use conditional statements in

your code to do this.

 In JavaScript we have the following conditional statements:

⯌ if statement - use this statement if you want to execute some

code only ifa specified condition is true

⯌ if...else statement - use this statement if you want to execute

some codeif the condition is true and another code if the condition is

false

⯌ if...else ifelse statement - use this statement if you want to select one any
blocks of code to be executed

⯌ switch statement - use this statement if you want to select one of

manyblocks of code to be executed.

IF STATEMENT:
You should use if statement if you want to execute some code only if aspecified

condition is True.

Syntax:

If <condition>{

JavaScript code executed if condition becomes true. }

Example: <script language =

"javascript">x = 5; y = 6;

if (x<6){

document.write(' x is greater'); }

</script>

Note that if is written in lowercase letters. Using uppercase letters (IF)

will generate a JavaScript error!

Shree H. N. Shukla College of It. & Mgmt.
(Affiliated To Saurashtra University)

IF...ELSE STATEMENT:

If you want to execute some code if a condition is true and another code if the

condition is not true, use if else statement.

IF…ELSE IF…ELSE STATEMENT:

It is used when user have two or more condition to check for executionof code.

Syntax:

if <condition1>

{

Code if condition 1 is true;

}else if <condition2>{

Code if condition 2 is true;

}else

{

Code if no condition becomes true;}

Syntax

if (condition){

Code to be executed if condition is true}

else{

Code to be executed if condition is not true }

Example:

<script language = "javascript">x =

5;

y = 6;

if (x > y) {

document.write('x is greater');

}else

{document.write('y is greater');}</script>

Shree H. N. Shukla College of It. & Mgmt.
(Affiliated To Saurashtra University)

Example

<script language = "javascript"> x=5;

y=6; z=7;

if(x>y && x>z)

{

document.write('x is greater');

}

else if(y>x && y>z)

{

document.write('y is greater');

}

else

{

document.write('z is greater');

}

</script>

1 Word Question – Answer

SR.NO
.

QUESTI
ON

ANSWER

1 How Many Control Structures available in JS ?

Givename.

5 (two)

If Statement

Switch
Statement

2 If any condition become false ,statement
following
 will be execute.

Else

3 In nested if first of all condition will be
checked.

Outer

4 How mamy flavors/types of If statement.Give

name.

4(four)

Simple

if If

else

If…else..if…

elseNested if

5 Which indicate easy way to represent multiple
conditions at the same time?

Else…if

Shree H. N. Shukla College of It. & Mgmt.
(Affiliated To Saurashtra University)

 SWITCH STATEMENT:

 use the switch statement to select one of many blocks of code to be executed

 First we have a single expression n (most often a variable), that is evaluatedonce.

SWITCH CASE :-

“ MULTI WAY DECISION

CASE :- WE CAN CREATE ANY NUMBER OF CASE VALUES
INSIDE SINGLE

DEFAULT :- IT EXECUTE WHEN NO ANY CASE VALUE

Syntax
:

switch (n)

case 1:

Execute code block
1

case 2:

Execute code block
2

default:

Code to be executed if n is

Different from case 1 and 2}

Shree H. N. Shukla College of It. & Mgmt.
(Affiliated To Saurashtra University)

 The value of the expression is then compared with the values for each case in the

structure.

 If there is a match, the block of code associated with that case is executed.

 Use break to prevent the code from running into the next case automatically.

1 Word Question – Answer

SR.NO. QUESTION ANSWER

1 Switch represent Multiway Decision
Statement

2 If no any case value match with

condition thenstatement following will

execute.

Default

3 statement is used to terminate
particular case.

Break

4 In switch case statement , any case value

will befollowed by sign.

: (Colon)

5 Write down syntax to represent switch
statement

Switch(Expression)

Shree H. N. Shukla College of It. & Mgmt.
(Affiliated To Saurashtra University)

 EXPLAIN JAVASCRIPT BREAK & CONTINUE STATEMENTS

BREAK STATEMENTS

The break statement "jumps out" of a loop.

The continue statement "jumps over" one iteration in the loop.

The Break Statement
You have already seen the break statement used in an earlier chapter of

this tutorial. It was used to "jump out" of a switch() statement.

The break statement can also be used to jump out of a loop.

The break statement breaks the loop and continues executing the code
after

the loop (if any):

Since the if statement has only one single line of code, the braces can

beomitt

Example

for (var i = 0; i < 10; i++)

{

if (i == 3)

{

break;

}

text += "The number is " + i + "
";

}

for (var i = 0; i < 10; i++)

{if (i == 3) break;

text += "The number is " + i + "
";}

Shree H. N. Shukla College of It. & Mgmt.
(Affiliated To Saurashtra University)

 EXPLAIN DIALOG BOXES IN JAVASCRIPT

In JavaScript we can create three kinds of popup boxes:

 Alert box, Confirm box, andPrompt box.

⯌ Alert Box

o An alert box is often used if you want to make sure

information comesthrough to the user.

o When an alert box pops up, the user will have to click "OK" to
proceed.

</html>

Example: <html>

<body>

<script type="text/javascript">

alert("Hello! I am an alert box!");

</script>

</body>

Syntax:

alert("sometext");

Shree H. N. Shukla College of It. & Mgmt.
(Affiliated To Saurashtra University)

CONFORM BOX

 A confirm box is often used if you want the user to verify

or acceptsomething.

 When a confirm box pops up, the user will have to click

either "OK" or"Cancel" to proceed.

 If the user clicks "OK", the box returns true. If the user

clicks "Cancel", thebox returns false.

PROMPT BOX

 A prompt box is often used if you want the user to input a value

beforeentering a page.

 When a prompt box pops up, the user will have to click either

"OK" or"Cancel" to proceed after entering an input value.

Syntax:

confirm(“sometext”)

Example:

<script type="text/javascript">

a = confirm('press ok

button');if (a==true)

alert('you press ok button');

else

alert('you press cancel button');

</script>

Shree H. N. Shukla College of It. & Mgmt.
(Affiliated To Saurashtra University)

 If the user clicks "OK" the box returns the input value. If the

user clicks"Cancel" the box returns null.

 EXPLAIN LOOPING STRUCTURE IN JAVA SCRIPT

Syntax:

prompt (“sometext”, “default value”);

Example:

<script type="text/javascript">

name=prompt("Please enter your name","tejas");

document.write("Hello " + name + "! How are you today?");

</script>

Loop Means “ to execute block of code
repeatedly”.

Looping statements also called

“Iterative statements”.

WHILE LOOP

DO WHILE LOOP LOOP TYPES FOR LOOP

Shree H. N. Shukla College of It. & Mgmt.
(Affiliated To Saurashtra University)

LOOP EXECUTION :-

 Looping refers to the ability of a block of code to repeat itself.

 This repetition can be for a predefined number of times or it can go until

certainconditions are met.

 For instance, a block of code needs to be executed till the value of a

variable becomes 20 (Conditional Looping), or a block of code needs to

be repeated 7 times.

 For this purpose, JavaScript offers 2 types of loop structures:

1) For Loops - This loop iterate a specific number of times as specified.

2) While Loops – This is Conditional Loops, which continue until a

condition is met.

Shree H. N. Shukla College of It. & Mgmt.
(Affiliated To Saurashtra University)

FOR LOOP:

 Expression1 sets up a counter variable and assigns the initial value.

 Condition specifies the final value for the loop to fire (i.e. the

loop fires tillcondition evaluates to true).

 Expression2 specifies how the initial value in expression1is

incremented.

Example:

 <script language ="javascript">for(n=10; n>=1; n--)
{

document.write(n);
}

</script>

Syntax

for (expression1; condition;
expression2)

{

// Javascript commands…

}

Shree H. N. Shukla College of It. & Mgmt.
(Affiliated To Saurashtra University)

WHILE LOOP:

 Where, the condition is a valid JavaScript expression that

evaluates to a Booleanvalue.

 The JavaScript commands execute as long as the condition is true.

Syntax

while (condition)

{

Javascript

code…

}

Shree H. N. Shukla College of It. & Mgmt.
(Affiliated To Saurashtra University)

 Give difference between While loop & Do .. While loop.

























While

Loop

Do.While
Loop

1)While loop is known as
 Entry Controlled
Loop.

1)Do..While loop is known as
 Exit controlled
Loop.

2) In While loop if condition become
false then

no any output will be given.

2)n Do..While loop if the
 condition become

true than atleast one loop will be

execute &output will be display.
3)There is no terminating semicolon(;)
at the end of loop.

3)There is terminating semicolon(;) at the
end of do..while loop.

4)Syntax :
While (<condition>

{<Statements>
}

4)Synt

ax : do
{<Statements>

} While (<condition>;

Example

<script language
="javascript">

var n=1;

while

(n<=10)

{

document.write(n);

n++;

}

Shree H. N. Shukla College of It. & Mgmt.
(Affiliated To Saurashtra University)

Give difference between While loop & For loop

 Give difference between Break & Continue.

WhileLoop ForLoop

1) Break is used to terminate the block
& get the control out of the loop.

1) Continue is used to get the control to
the next iteration of theloop.

2) Break statement can be used in
both switch case & loop.

2) Continue statement can be only used
with looping statement.

3)Syntax :
<break>;

3)Syntax :
<continue>;

1 Word Question – Answer

SR.NO
.

QUESTION ANSWER

1 Looping statements are also known as
statements

Iterative

2 Loop is known as Entry Control
Loop.

While

3 Loop is known as Exit control
Loop.

Do While

4 In Do while Loop condition will be terminated

with .

Semi Colon(;)

5 Loop is known as faster loop in c. For

While Loop For
Loop

1)While loop is bit slower than for
loop.

1)For loop is faster than while loop.

2) While loop is not suitable for simple
Initialization.

2)For loop is more suitable when
there is
Simple initialization.

3)Syntax :
While (<condition>

{

<Statements>
}

3)Syntax :
For(<Initialization>;<Condition>;

<Inc./Dec.>)

{
<Statements>

}

Shree H. N. Shukla College of It. & Mgmt.
(Affiliated To Saurashtra University)

EXPLAIN ARRAY IN JAVA SCRIPT

 An array is a special variable, which can hold more than one value, at a time.

 If you have a list of items (a list of car names, for example), storing the

cars in singlevariables could look like this:

var car1="Saab";

var car2="Volvo";

var car3="BMW";

 However, what if you want to loop through the cars and find a specific

one? And what ifyou had not 3 cars, but 300?

 The best solution here is to use an array!

 An array can hold all your variable values under a single name. And you

can access thevalues by referring to the array name.

 Each element in the array has its own ID so that it can be easily accessed.

 An array can be defined in three ways.

Shree H. N. Shukla College of It. & Mgmt.
(Affiliated To Saurashtra University)

The following code creates an Array object called myCars:

var myCars=new Array();

//regular array

myCars[0]="Saab";

myCars[1]="Volv";

myCars[2]="BMW";

var myCars=new
Array("Saab","Volvo","BMW"); //
condensed array

var myCars=["Saab","Volvo","BMW"];

 // literal array

Access an Array

 You can refer to a particular element in an array by referring

to the name ofthe array and the index number.

 The index number starts at 0.
EXAMPLE: document.write(myCars[0]);

1 Word Question – Answer

SR.NO. QUESTION ANSWER

1 What is Array? Group of Elements having

samename and type.
2 Array is datatype. Derived

3 Array is used to represent Collection

4 Types of array can be & Single/One

dimension&

Multi/Two

dimension

Shree H. N. Shukla College of It. & Mgmt.
(Affiliated To Saurashtra University)

 Function

 Functions offer the ability to group together JavaScript program code that

performs a specific task into a single unit that can be used repeatedly

whenever required in a JavaScript program.

 A user defined function first needs to be declared and coded.

 Once this is done the function can be invoked by calling it using the

name given to thefunction when it was declared.

 Functions can accept information in the form of arguments and can return
results.

 Appropriate syntax needs to be followed for declaring functions, invoking

them,passing them values and accepting their return values.

Declaring Function:
 Functions are declared and created using the function keyword. A

functioncontain the following:

 A name for the function.

 A list of parameters (arguments) that will accept values passed

tothe function when called.

 A block of JavaScript code that defines what the function does

Syntax:

function <function name>(parameter1,parameter2,..)

{

// JavaScript code…

}

Shree H. N. Shukla College of It. & Mgmt.
(Affiliated To Saurashtra University)

 A <function name> is case sensitive, can include underscore (_),

and has to startwith a letter.

 The list of parameters passed to the function appears in

parentheses andcommas separate members of the list.

Place of Declaration:
i) Functions can be declared anywhere within an HTML file.

ii) Preferably, functions are created within the <HEAD>…<HEAD>

tags of the HTMLfile.

iii) This ensures that all functions will be parsed before they are invoked or

called.

iv) If the function is called before it is declared and parsed, it will

lead to an errorcondition.

<html>

<head>

<script language=”javascript”>

function printnm() {

var user=”shri”;

document.write(“name is : ”);

document.write(user);

}

</script></head>

<body onLoad=”printnm();”>

</body></html>

Shree H. N. Shukla College of It. & Mgmt.
(Affiliated To Saurashtra University)

Passing Parameters:

 Values can be passed to function parameters when a

‘parameterized’ function is called. Values are passed to the

function by listing them in the parentheses following the function

name.

 Multiple values can be passed, separated by commas provided that

the function has been coded to accept multiple parameters.

The return Statement
 The return statement is used to specify the value that is returned

from thefunction.

 So, functions that are going to return a value must use the return

statement.

1 Word Question – Answer

SR.NO. QUESTION ANSWER

1 FULL FORM OF UDF USER DEFINE FUNCTION

2 USE OF UDF CREATE OUR OWN
FUNCTION

3 WHICH KEY WORD IS USED TO CREATE
UDF?

FUNCTION KEYWORD

Example:

function prod(a, b)

{

x=a*b;

return x;

}

Product=prod (2, 3);

Now variable product contains the 6;

Shree H. N. Shukla College of It. & Mgmt.
(Affiliated To Saurashtra University)

BUILT IN FUNCTION IN JAVASCRIPT
STRING FUNCTION:

1) charAt()

Purpose:
 This function returns the character located at position

passed in to theargument.

 This indexing is done from left to right starting with the 0 (zero)

position.

 If the num passed is not a valid index in the string, -1 is returned.

1) 2 charAt()

Syntax: <string>.charAt(num);

Syntax: <string>.charAt(num);

Shree H. N. Shukla College of It. & Mgmt.
(Affiliated To Saurashtra University)

Purpose:
 This function returns the character located at position

passed in to theargument.

 This indexing is done from left to right starting with the 0 (zero)

position.

 If the num passed is not a valid index in the string, -1 is returned.

2) concat()

Purpose:

o This function is used to join more than one string with string1.

o In argument of this function user can give more than one string.

Example:

<script language = "javascript">

var x = "This is a test, small

test.";y = x.charAt(5);

document.write('character at 5th position is '+y);

</script>

Output: character at 5th position is i

Syntax: <string>.concat(string2);

Example:

<script language =

"javascript">var x =

"hi";

var y = "hw r

u?"; var z =

x.concat(y);

document.write('final string is '+z);

</script>

Shree H. N. Shukla College of It. & Mgmt.
(Affiliated To Saurashtra University)

3) indexOf():

Purpose:
o This method is used to find the position of specified

string or charstarting from specified index.

o This method starts to find string from starting position (left to
right).

o Here index in argument is optional if it is not defined that start
form zero position.

Syntax: <string>.indexOf(<string or char to search>, [index]);

Example:

<script

language="JavaScript

">x = "Hello World!";

document.write("index of l is from 5th position

"+x.indexOf("l",5)+'
');

document.write("index of l is "+x.indexOf("l"));

</script>

Output: index of l is from 5th position 9 index of l is 2

Shree H. N. Shukla College of It. & Mgmt.
(Affiliated To Saurashtra University)

4) lastIndexOf():

Purpose:
o This method is used to find the position of specified

string or charstarting from specified index.

o This method starts to find string from ending position (right to
left).

5) Replace:
Purpose:

o This method is used to replace the string from main string withnew string

Example:

<script language="JavaScript1.2">

x = "This is main string to be

replace"y =

x.replace("string","text");

document.write("new string is "+y);

</script>

Output: new string is This is main text to be replace

Syntax: <string>.lastIndexOf(<string or char to search>, [index]);

Example:

<script

language="JavaScript

">x = "Hello World!";

document.write("index of l is from 5th position

"+x.lastIndexOf("l",5)+'
');

document.write("index of l is "+x.lastIndexOf("l"));

</script>

Output: index of l is from 5th position 3 index of l is 9

Syntax: <string>.replace(<string to replace> or [regular exp], <new string>);

Shree H. N. Shukla College of It. & Mgmt.
(Affiliated To Saurashtra University)

6) Search:

Purpose:
o This method is used to find the specified string position of main

string.

o If string is match then it will return the position.

o If string is not match then it will return -1.

7) substr():

Purpose:

o This method returns the string from position specified in

num1 with noof character specified with num2.

o If num1 is not specified then it starts to count character from 0.

o If num1 is negative then num2 is optional and it starts

Syntax: <string>.search(<string to be search> or <regular expression>);

Example:

<script language="JavaScript1.2">

x = "This is main string to be

replace"y = x.search("string");

document.write("the position is

"+y);

</script>

Output: the position is 13

Syntax: <string>.substr([num1], [num2]);

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

to count fromlast character of string.

8) substring():

Purpose:

o The substring() method returns the characters starting with the

indexed position num1 and ending with the character before num2.

o The string's first character is in position 0.

o If you pass num1 as a negative number, it will be treated as 0.

o If you pass num2 as a value greater than the string.length

property, it willbe treated as string.length.

o If num1 equals num2, an empty string is returned.

o It is also possible to pass a single index location to the method.

Example:<script language="JavaScript1.1">

x = "This is a test";

y = x.substring(5,10);

document.write('the substring from position 5 to 10 is: '+y);

</script>

Output: the substring from position 5 to 10 is: is a

Exampl:

<script language="JavaScript1.1">

x = "This is a test";

y = x.substr(5,10);

document.write('the substring from position 5 to 10 is:'+y);

</script>

Output: the substring from position 5 to 10 is: is a test

Syntax: <string>.substring([num1], [num2]);

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

9) toUpperCase():

Purpose:
This method returns all the characters of string in to uppercase.

10) toLowerCase():

Purpose:

This method returns the all characters of string in lower case.

Syntax: <string>.toUpperCase();

Example:

<script language="JavaScript1.1">

x = "This is a test";

y = x.toUpperCase();document.write(y);

</script>

Output: THIS IS A

TEST

Syntax: <string>.toLowerCase();

Example:

<script language="JavaScript1.1">

x = "THIS IS A TEST";

y = x.tolowerCase();

document.write(y);

</script>

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

 MATHS

1) abs()

Purpose:

o The abs() method is used to calculate the absolute value of

num.

Syntax: Math.abs(num)

Example:

<script

language="JavaScript1.1"

>x = Math.abs(-10);

document.write(x);

</script>

Output:

10

Note: for all math function user have to user Math object before all

function.

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

2) Ceil():

Purpose:
o The ceil() method calculates the smallest integer that is greaterthan or equal to the number

passed in as a parameter

3) floor():

Purpose:

o Get the largest integer number, which is equivalent to or

less thanthe number passed as the parameter.

Syntax: Math.ceil(num)

Example:

<script

language="JavaScript">

x= Math.ceil(2.1);

document.write(x);

</script>

Output: 3

Syntax: Math.floor(num)

Example:

<script

language="JavaScript">

x= Math.floor(2.9);

document.write(x);

</script>

Output: 2

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

4) pow():

Purpose:
o The pow() method of the Math object is used to

calculate anexponent power.

5) random():

Purpose:

o The random() method of the Math object is used to

obtain arandom number between values 0 and 1.

Syntax: Math.pow(num1, num2)

Example:

<script

language="JavaScript"

>x= Math.pow(2, 3);

document.write(x);

</script>

Output: 8

Syntax: Math.random()

Example:

<script

language="JavaScript

">x= Math.random();

document.write(x);

</script>

Output: 0.45678993

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

6) round():

Purpose:

o The round() method rounds a number to its nearest integer value.

o If the fractional portion of the number is .5 or greater, the

result is roundedto the next highest integer.

o If the fractional portion of number is less than .5, the result is

rounded to thenext lowest integer.

7) max():

 Purpose:
o The max() method of the Math object gets the given

number of the twoparameters passed to it.

o The larger value is returned as the result.

Syntax: Math.round(num)

Example:

<script

language="JavaScript

">x=

Math.round(3.4);

document.write(x);

</scrip>

Output: 3

Example:

<script language="JavaScript">

x= Math.max(3,4,1,2);

document.write(x);

</script>

Syntax: Math.max(num1, num2, num3…numn)

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

8) min():

Purpose:

o The min() method of the Math object gets the

minimum number ofthe given parameters passed to it.

o The larger value is returned as the result.

Example:

<script language="JavaScript">

x= Math.min(3,4,1,2);

document.write(x);

</script>

Output: 1

Syntax: Math.min(num1, num2…numn)

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

 DATE:

1) Date()

Purpose:

It is used to get the current system date and time.

Syntax: <variable name> = new Date()

Example:

<script language="JavaScript">

x= new Date();

document.write(x);

</script>

Output: Tue Apr 12 2011 09:04:37 GMT+0530 (India Standard Time)

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

2) getDate():

Purpose:
o The getDate() method returns the day of the month expressed as an

integer from1 to 31.

o To access this function user must have to create date object.

o Date object is created as follows.

o x = new Date (); here we create date object named x.

3) getDay():

 Purpose:
o This method returns the current day of the week in integer

form from 0 to6

o Sunday is starting from 0 and onwards.

Syntax: <date object>.getDate();

Example:

<script language="JavaScript">

x= new Date();

document.write(x.getDate());

</script>

Output: 30

Syntax: <date object>.getDay();

Example:

<script language="JavaScript">x= new

Date();

document.write(x.getDay());

</script>

Output: 6

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

4) getMonth():

Purpose:

o The getMonth() method returns the month portion of the Date

o bject expressed as an integer from 0 (January) to 11

(December).

5) getYear():

Purpose:
o The getYear() method returns the year portion of the Date object. The

year is represented as either a two-digit number or a four-digit number,depending on

Syntax: <date object>.getMonth();

Example:

<script language="JavaScript">

x= new Date();

document.write(x.getMonth());

</script>

Output: 3

Syntax: <date object>.getYear();

Example:

<script language="JavaScript">

x= new Date();

document.write(x.getYear());

</script>

Output: 11

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

1) getFullYear():

Purpose:
This method returns the year portion of the date with four digitnumber.

2) getHours():

Purpose:

o The getHours() method returns the hour portion of the date expressed as an integer

from 0 (12:00 a.m. midnight) to 23 (11:00 p.m.).

Syntax: <date object>.getFullyear();

Example:

<script language="JavaScript">

x= new Date();

document.write(x.getFullYear());

</script>

Output: 20

11

Syntax: <date object>.getHours();

Example:

<script language="JavaScript">

x= new Date();

document.write(x.getHours());

</script>

Output:

6

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

3) getMinutes():

Purpose:
 This method returns the current minute of the date expressed as an integerfrom 0 to 59.

6) getSeconds():

Purpose:

The getSeconds() method returns the seconds portion of the Dateobject expressed as an

integer from 0 to 59.

Syntax: <date object>.getMinutes();

Example:

<script language="JavaScript">

x= new Date();

document.write(x.getMinutes());

</script>

Output:

19

Syntax: <date object>.getSeconds();

Example:

<script language="JavaScript">

x= new Date();

document.write(x.getSeconds());

</script>

Output: 29

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

7) getMiliSeconds():

Purpose:
o The getMilliseconds() method returns the millisecond portion of

the dateexpressed as an integer from 0 to 999.

8) setDate():

Purpose:

o The setDate() method sets the day of the month in the Date object to

the argument day, an integer from 1 to 31.

o The method returns an integer representing the number of

milliseconds between midnight January 1, 1970 (GMT) to the date

and time specified in the Date object after the day of the month has

been adjusted.

226

Example:

<script language="JavaScript"> x=

new Date();

document.write(x.setDate(17));

</script>

Output: 1303051102710

Syntax: <date object>.getMilliSeconds();

Example:

<script language="JavaScript">

x= new Date();

document.write(x.getMilliSeconds());

</script>

Output: 299

Syntax: <date object>.setDate(Day);

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

9) setMonth():

Purpose:
o The setMonth() method sets the month in the Date object.

o The argument month is an integer from 0 (January) to 11
(December).

o The method returns an integer representing the number of

milliseconds between midnight January 1, 1970 (GMT) to the

new date.

10) setYear():

Purpose:

o The setYear() method sets the year in the Date object to the

argument year. The argument can be either a four-digit or two-

digit integer.

o The method returns an integer representing the number of

milliseconds between midnight January 1, 1970 (GMT) to the

new date.

Syntax: <date object>.setMonth(month);

Example:

<script

language="JavaScript

">x= new Date();

document.write(x.setMonth(6));

</script>

Output: 1309618547995

Syntax: <date object>.setYear(Year);

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

Example:

<script

language="JavaScript">

x= new Date();

document.write(x.setFullYear(

1987));

</script>

Output: 546793593059

2

11) setFullYear():

Purpose:

o The setFullYear() method sets the year in the Date object to

the argumentyear, a four-digit integer.

o The method returns an integer representing the number of

milliseconds between midnight January 1, 1970 (GMT) to

the new date after setting.

Example:

<script language="JavaScript">

x= new Date();

document.write(x.setYear(1987));

</script>

Output: 546793593059

Syntax: <date object>.setFullYear(year);

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

12) setHours():

Purpose:
o The setHours() method sets the hour in the Date object to

the argumenthours, an integer from 0 (12:00 a.m. midnight) to

23 (11:00 p.m.).

o The method returns an integer representing the number of

milliseconds between midnight January 1, 1970 (GMT) to the

new date.

13) setMinutes():

Purpose:

o The setMinutes() method sets the minutes in the Date object

to theargument minutes, an integer from 0 to 59.

Syntax: <date object>.setHours(Hours);

Example:

<script language =

"javascript">x = new

Date(); x.setHours(4);

document.write(x);

</script>

Output: Sat Apr 30 2011 04:50:07 GMT+0530 (India Standard Time)

Syntax: <date object>.setMinutes(minutes);

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

The method returns an integer representing the number of
milliseconds between midnight January 1, 1970 (GMT) to the new
date.

14) setSeconds():

Purpose:

o The setSeconds() method sets the seconds in the Date object to

theargument seconds, an integer from 0 to 59.

The method returns an integer representing the number of millisecondsbetween

Example:

<script language =

"javascript">x = new

Date(); x.setMinutes(4);

document.write(x);

</script>

Output: Sat Apr 30 2011 04:58:07 GMT+0530 (India Standard Time)

Syntax: <date object>.setSeconds(seconds);

Example:

<script language =

"javascript">x = new

Date();

x.setSeconds(30);

document.write(x);

</script>

Output: Sat Apr 30 2011 04:58:30 GMT+0530 (India Standard Time)

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

1) join()

Purpose:

o The join () method converts all the elements to strings and then

concatenatesall the strings into a longer string.

o If an argument is provided in the parameter list, it is used to

separate theelements in the string returned by the method.

2) reverse()

o The reverse () method reverses the order of the elements in the

arrayaccording to the array index numbers.

Syntax: <array object>.join(string);

Example:

<script language = "javascript">

x = new Array ("A","B","C");

x.reverse();

document.write("x[0]=",x[0],"
");

document.write("x[1]=",x[1],"
");

document.write("x[2]=",x[2],"
");

</scrip>

Output:

x [0]=C

x [1]=B

x [2]=A

Example:<script language = "javascript">
fruit = new Array("A","B","C");

aString = fruit.join("-");

document.write("The fruit array contains: ",aString);

</script>

Output: The fruit array contains: A-B-C

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

3) pop():

Purpose:
o The pop () method deletes the last element of the array and

sets the array'slength property to one less than its current value.

o This last element is returned from the method.

4) push()

Purpose:

o The push () method "pushes" the elements to the end of the

array in theorder they were listed.

o arg1,...argN are elements to be pushed to the end of the array

o It returns the last element added to the end of the array,

which is also thelast argument in the parameter list.

Syntax: <array object>.pop();

Example:

<script language = "javascript">

x = new

Array("a","b","c");y =

x.pop();

document.write(y," was removed from the pile.");

</script>

Output: c was removed from the pile.

Syntax: <array object>.push(arg1, arg2…argn);

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

Example:

<script language = "javascript">

x = new Array("A","B","C");

document.write("before shift:

",x[0],"
");y = x.shift();

document.write("after shif: ",x[0],"
");

</script>

Output: before shift: A after shift: B

5) shift()

Purpose:
o The shift () method deletes and returns the first element of the

array.

o Once deleted, all the remaining elements are shifted down one spot.

o The first position is filled by the element that was previously in

the secondposition.

Example:

<script language =

"javascript">x = new

Array("A","B");

y = x.push("C","D");

document.write(x[2],"
");

document.write(x[3]);

</script>

Output: C D

Syntax: <array object>.shift ();

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

6) sort():

Purpose:
o The sort () method rearranges the elements of the array based

on a sortingorder.

o If the method has no parameters, JavaScript attempts to convert

all the elements of the array to strings and then sort them

alphabetically.

o If array contains numeric value then following function is

needed for sortingan array.

Function x (a, b) // this is for ascending order

{

return a - b;

}

OR

Function x (a, b) // this is for descending order

{

return b - a;

}

2

3

3

Syntax: <array object>.sort([sort function]);

Example:

<script type="text/javascript">

function x(a,b)

{

return a - b;

}

var n = ["10", "5", "40", "25", "100", "1"];

document.write(n.sort(x));

</script>

Output: 1, 5, 10, 25, 40, 100

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

 String

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

 EXPLAIN EVENTS IN JAVA SCRIPT

HOW EVENTS WORKS

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

1. onblur Event : When a user leaves an input field
<!DOCTYPE html>

<html>

<head>

<script>

function myFunction() {

var x= document.getElementById("fname ");

x.value=x.value.toUpperCase ();

</script>

 </head>
<body>

Enteryourname:<input type="text"id="fname"

onblur="myFunction()">

<p>When you leave the input field, a function is triggered

whichtransforms the input text to upper case.</p>

</body>

</html>

Note : When you leave the input field, a function is triggered

which transforms the input textto upper case.

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

2. onblur Event : When a user changes the content of an

 input field
<!DOCTYPE html>

<html>

<head>

<script>

function myFunction()

{

var x = document.getElementById("fname"); x.value =

x.value.toUpperCase();

}

</script>

</head>

<body>

 Enter your name:<input type="text" id="fname"onblur="myFunction()">

 <p>When you leave the input field,afunction is triggered whichtransforms the input

text to upper case.</p>

</body>

</html>

When you leave the input field, a function is triggered which transforms the

input text to uppercase.

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

3. onchange Event : When a user selects a dropdown value
<!DOCTYPE html>

<html>

<head>

<script>

function preferedBrowser()

{

prefer = document.forms[0].browsers.value;

alert("You prefer browsing internet with " +prefer);

}

</script>

</form>

</head>

<body>

<form>

Choose which browser you prefer:

<select id="browsers" onchange="preferedBrowser()">

<option value="Chrome">Chrome</option>

<option value="InternetExplorer">InternetExplorer</option>

<option value="Firefox">Firefox</option>

</select>

</body>

</html>

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

4. onfocus Event : When an input text field gets focus

<!DOCTYPE html>

<html>

<head>

<script>

function myFunction(x)

{

x.style.background = "yellow";

}

</script>

</head>

<body>

Enter your name: <input type="text" onfocus="myFunction(this)">

<p>When the input field gets focus, a function is triggered

which changesthe background-color.</p>

</body>

</html>

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

5. onsubmit Event : When a user clicks the submit button
 <!DOCTYPE html>

<html>

<body>

<p>Use the addEventListener() method to attach a "submit" event to a form element.</p>

<p>When you submit the form, a function is triggered which alerts some text.</p>

<form id="myForm" action="/action_page.php">

 Enter name: <input type="text" name="fname">

 <input type="submit" value="Submit">

</form>

<script>

document.getElementById("myForm").addEventListener("submit", myFunction);

function myFunction() {

 alert("The form was submitted");

}

</script>

</body>

</html>

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

6. onreset Event : When a user clicks the reset button

<!DOCTYPE html><html><head>

<script> function message() {

alert("This alert box was triggered by the onreset

event handler");

}

</script></head>

<body>

<form onreset="message()">

Enter your name: <input type="text" size="20">

<input type="reset">

</form>

</body>

</html>

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

7. onkeypress Event : When a user is pressing / holding down

a key

<!DOCTYPE html>

<html>

<head>

<script>

function myFunction() {

alert("You pressed a key inside the input field");

}

</script>

<</head>

<body>

<p>A fu function is triggered when the user is pressing a key in the inputfield.</p>

< <input type="text" onkeypress="myFunction()">

< </body>

<</html>

Note : A function is triggered when the user is pressing a

key in the input field

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

8. onkeyup Event : When the user releases the

key
<!DOCTYPE html>

<html>

<head>

<script>

function myFunction() {

var x =

 document.getElementById("fname");

x.value = x.value.toUpperCase();

}

</script>

</head>

<body>

<p>A function is triggered when the user releases a key

in the input field.

The function transforms the character to upper

case.</p> Enter your name:

 <input type="text"

id="fname"onkeyup="myFunction()">

</body>

</html>

Note: A function is triggered when the user releases a key

in the input field. The function transforms the character to

upper case.

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

9. onclick Event : When button is clicked

<!DOCTYPE html>

<html>

<head>

<script>

function myFunction()

{ document.getElementById("demo").innerHTML="HelloWorld";

}

</script></head>

<body>

<p>Click the button to trigger a function.</p>

<button onclick="myFunction()">Click me</button>

<p id="demo"></p>

</body>

</html>

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

10. ondblclick Event : When a text is double clicked
<!DOCTYPE html>

<html>

<head>

<script>

Function myFunction()

{ document.getElementById("demo").innerHTML

="HelloWorld";

}

</script>

</head>

<body>

<p ondblclick="myFunction()">Doubleclick this paragraph to

trigger afunction.</p>

<p id="demo"></p>

</body>

</html>

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

11. onload Event : When the page has been loaded

 <!DOCTYPE html>

<html>

<head>

<script>

function myFunction()

{

</script>

alert("Page is loaded");

}

</head>

<body onload="myFunction()">

<h1>Hello World!</h1>

</body>

</html>

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

12. onunload Event : When the browser closes

 the document

<!DOCTYPE html>

<html>

<head>

<script>

function myFunction() {

alert("Thank you for visiting SS!");

}

</script>

</head>

<body onunload="myFunction()">

<h1>Welcome to my Home Page</h1>

<p>Close this window or press F5 to reload the

page.</p>

</body></html>

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

 EXPLAIN DOCUMENT OBJECT

Every web page resides inside a browser window which can be considered as an object.

 A Document object represents the HTML document that is displayed in that

window. The Document object has various properties that refer to

otherobjects which allow access to andmodification of document content.

 The way that document content is accessed and modified is called the

Document Object Model, or DOM. The Objects are organized in a

hierarchy. This hierarchical structure applies to the organization of objects in

 a Web document.

 Window object: Top of the hierarchy. It is the outmost element of

the object hierarchy.

 Document object: Each HTML document that gets loaded into a

window becomes a document object. The document contains the

content of the page.

 Form object: Everything enclosed in the <form>...</form> tags sets
the form object.

 Form control elements: The form object contains all the elements

defined for thatobject such as text fields, buttons, radio buttons, and

checkboxes.

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

 Here is a simple hierarchy of few important objects:

1 Word Question – Answer

SR.NO. QUESTION ANSWER

1 FULL FORM OF DOM DOCUMENT OBJECT
MODEL

2 LIST OUT ALL OBJECTS OF DOM

OBJECT
1. WINDOW

2. DOCUMENT
3. FORM
4. FORM CONTROL

3 WHAT IS THE USE OF DOM OBJECT? A DOCUMENT

OBJECT REPRESENTS

THE HTML DOCUMENT

THAT IS DISPLAYED
IN THAT WINDOW

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

 EXPLAIN HISTORY OBJECT

HOW HISTORY OBJECT WORKS

The history property has the return value as history object, which is an

array of history items having details of the URL’s visited from within that

window. Also, note that the History object is a JavaScript object and not

an HTML DOM object.

General syntax of history property of window object:

 window.history

The JavaScript runtime engine automatically creates this object.

An introduction on the history object and the properties and methods

associated with it was covered in an earlier section.

http://www.exforsys.com/tutorials/javascript/javascript-history-object-properties-and-methods.html

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

 Property of History Object:

1. length:
 The length property of the history object returns the number of

elements in thehistory list.

 General syntax of length property of history Object:

 history.length

 An example to understand the length property of history object:

2. current:
 This property contains the complete URL of the current History entry.

 General syntax of current property of history Object:

o history.current

3. next:
 The next property of history object contains the complete URL of the

next element in the History list. This functionality or the URL visited

is the same as pressing the forward button or menu.

 General syntax of next property of history Object:

o history.next

4. previous:
 The previous property of history object contains the complete URL of

the previous element in the History list. This functionality or the URL

visited is the same aspressing the back button or menu.

 General syntax of previous property of history Object:

o history.previous

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

 Methods of History Object:

1. back():
 There may be scenarios where the programmer wishes to load the

previous URL presentin the history list. In this case, the programmer can

make use of the back() method of the history object.

The back() method of the history object takes the user to the
previous page. The functionality results in the same as pressing the
back button of the browser.

 General syntax of back method of history Object:

history.back()

2. forward():
 The forward() method of the history object loads the next URL in the

History list. The functionality results are the same as pressing the

forward button of the browser.

 General syntax of forward method of history Object:

o history.forward()

http://www.exforsys.com/tutorials/javascript/javascript-history-object-properties-and-methods.html

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

3. go():
 If the programmer wishes to load a specified URL from the History

list, then the gomethod of history object can be used.

 General syntax of go method of history Object:

o history.go(number)

or

o history.go(URL)

 The back method seen above is the same as history.go(-1) in terms of

go method ofhistory object. The forward method seen above is the same

as history.go(1)

 1 MARKS Question – Answer

SR.NO
.

QUESTION ANSWER

1 WHAT IS HISTORY OBJECT? HISTORY OBJECT USED

TO WORK WITH

BROWSER HISTORY

2 LIST OUT

OBJECT

PROPERTY OF HISTORY 1. LENGTH

2. CURRENT
3. NEXT
4. PREVIOUS

3 LIST OUT

OBJECT

METHODS OF HISTORY 1. BACK
2. FORWARD
3. GO

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

 EXPLAIN NAVIGATOR OBJECT.
The Navigator object of JavaScript returns useful information

about the visitor'sbrowser and system.

Properties

Properties Description

appCodeName The code name of the browser.

appName The name of the browser (ie: Microsoft Internet Explorer).

appVersion Version information for the browser (ie: 5.0 (Windows)).

cookieEnabled Boolean that indicates whether the browser has cookies enabled.

language Returns the default language of the browser version (ie: en-US). NS

and Firefoxonly.

mimeTypes[] An array of all MIME types supported by the client. NS and Firefox
only.

platform[] The platform of the client's computer (ie: Win32).

plugins An array of all plug-ins currently installed on the client. NS and Firefox
only.

systemLangua
ge

Returns the default language of the operating system (ie: en-us). IE only.

userLanguage Returns the preferred language setting of the user (ie: en-ca). IE only.

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

Q.13 EXPLAIN EMAIL VALIDATION & FORM VALIDATION

EMAIL VALIDATION

Validating email is a very important point while validating an HTML form.

In this page we have discussed how to validate an email using JavaScript :

An email is a string (subset of ASCII characters) separated into two parts by

@ symbol. a "personal_info" and a domain, that is personal_info@domain.

The length of the personal_info part may be up to 64 characters long and

domain name may be up to 253 characters.

The personal_info part contains the following ASCII characters.

 Uppercase (A-Z) and lowercase (a-z) English letters.

 Digits (0-9).
 Characters ! # $ % & ' * + - / = ? ^ _ ` { | } ~
 Character. (period, dot or fullstop) provided that it is not the first or last

character

and it will not come one after the other.

 The domain name [for example com, org, net, in, us, info] part

contains letters,digits, hyphens and dots.

 Example of valid email id

 my.ownsite@ourearth.org

 mysite@you.me.net

mailto:my.ownsite@ourearth.org
mailto:mysite@you.me.net

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

 Example of invalid email id

 mysite.ourearth.com [@ is not present]

 mysite@.com.my [tld (Top Level domain) can not start with dot "."]

 @you.me.net [No character before @]

 mysite123@gmail.b [".b" is not a valid tld]

 mysite@.org.org [tld can not start with dot "."]

 .mysite@mysite.org [an email should not be start with "."]

 mysite()*@gmail.com [here the regular expression only allows

character, digit, underscore and dash]mysite..1234@yahoo.com

[double dots are not allowed]

JavaScript code to validate an email id
function ValidateEmail(mail)

{

if(/^\w+([\.-]?\w+)*@\w+([\.-
]?\w+)*(\.\w{2,3})+$/.test(myForm.emailAddr.value))

{

FORM VALIDATION

It is important to validate the form submitted by the user because it can have

inappropriate values. So validation is must.

The JavaScript provides you the facility the validate the form on the client side

so processing will be fast than server-side validation. So, most of the web

developers prefer JavaScript form validation.

Through JavaScript, we can validate name, password, email, date, mobile number

etc fields.

In this example, we are going to validate the name and password. The name

can’t be empty andpassword can’t be less than 6 characters long.

Here, we are validating the form on form submit. The user will not be

forwarded to the next page until given values are correct.

mailto:mysite123@gmail.b
mailto:.mysite@mysite.org
mailto:mysite..1234@yahoo.com

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

<script>

function validateform()

{

var name=document.myform.name.value;

var password=document.myform.password.value;

if (name==null || name=="")

{

alert("Name can't be

blank");return false;

}else if(password.length<6)

{

alert("Password must be at least 6 characters long.");

return false;

}

}

</script>

<body>

</form>

<form name="myform" method="post" action="abc.jsp"

onsubmit="return validateform()" >

Name: <input type="text" name="name">

Password: <input type="password" name="password">

<input type="submit" value="register">

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

 JavaScript Number Validation

 Let's validate the textfield for numeric value only. Here, we are using isNaN()
function.

<script>

function validate()

{

var num=document.myform.num.value; if

(isNaN(num))

{

if (isNaN(num))

{

document.getElementById("numloc").innerHTML="Enter Numeric value only";

return false;

}

else

{

return true;

}

}

}

</script>

<form name="myform" onsubmit="return validate()" >

Number: <input type="text" name="num"><span

id="numloc">

<input type="submit" value="submit">

</form>

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

 JavaScript Retype Password Validation

<script type="text/javascript"> function matchpass()

 {

var firstpassword=document.f1.password.value;

var

 secondpassword=doc

ument.f1.password2.value;

if(firstpassword==secondpassword)

{}

else

{}

}

return true;

alert("password

must be same!");

return false;

</script>

<form name="f1" action="register.jsp"

onsubmit="return matchpass()">

Password:<input type="password"

name="password" />

Re-enter Password:<input type="password"

name="password2"/>

<input type="submit">

</form>

Shree h. N. Shukla College of i.t. & mgmt.
(Affiliated To Saurashtra University)

ES6 Overview & Basics REACT JS

 ES6 Overview:

ECMAScript 2015, commonly known as ES6, brought significant enhancements to

JavaScript, making the language more expressive and powerful. Some key features of ES6

include:

1)Let and Const Declarations:

 let allows you to declare block-scoped variables.

 const declares constants with block scope.

 javascript

let variableName = "some value";

const PI = 3.14159;

2)Arrow Functions:

 A concise way to write functions.

 javascript

const add = (a, b) => a + b;

3)Template Literals:

 A more readable way to concatenate strings.

 javascript

const name = "John";

const greeting = `Hello, ${name}!`;

Shree h. N. Shukla College of i.t. & mgmt.
(Affiliated To Saurashtra University)

4)Destructuring Assignment:

 Extract values from objects or arrays into distinct variables.

 javascript

const person = { name: "Alice", age: 30 };

const { name, age } = person;

5)Classes:

 A more straightforward way to create constructor functions and prototype-based

inheritance.

 javascript

class Animal

{

 constructor(name)

{

 this.name = name;

 }

 speak() {

 console.log(`${this.name} makes a sound.`);

 }

}

6)Modules:

 Import and export functionality between different JavaScript files.

 javascript

// export.js

export const PI = 3.14159;

// import.js

import { PI } from './export';

Shree h. N. Shukla College of i.t. & mgmt.
(Affiliated To Saurashtra University)

 React.js Basics:

React.js is a JavaScript library for building user interfaces, developed by Facebook.

Here are some fundamental concepts:

1)Components:

 Building blocks of a React application.

 Can be functional or class-based.

 Javascript

// Functional Component

const MyComponent = () => {

 return <div>Hello, World!</div>;

};

// Class Component

class MyClassComponent extends React.Component {

 render() {

 return <div>Hello, World!</div>;

 }

}

2)JSX (JavaScript XML):

 Syntax extension for JavaScript, used with React to describe what the UI

should look like.

 javascript
const element = <h1>Hello, JSX!</h1>;

3)Props:

 Data passed from a parent component to a child component.

 javascript

const Greeting = (props) => {

Shree h. N. Shukla College of i.t. & mgmt.
(Affiliated To Saurashtra University)

 return <div>Hello, {props.name}!</div>;

};

4)State:
 Internal data storage for a component.

 Changes to state trigger a re-render of the component.

 javascript
class Counter extends React.Component {

constructor() {

 super();

 this.state = { count: 0 };

 }

 render() {

 return <div>Count: {this.state.count}</div>;

 }

}

5)Lifecycle Methods:
• Methods that are called at different points in the life cycle of a component.

 javascript

class MyComponent extends React.Component { componentDidMount() {

// Called after the component is rendered to the DOM

}

componentWillUnmount() {

 // Called just before the component is removed from the DOM

 } }

6)Handling Events:
 React uses camelCase for event names.

 javascript
const Button = () => {

 const handleClick = () => {

 console.log("Button clicked!");

 };

 return <button onClick={handleClick}>Click Me</button>;

};

These are just the basics of ES6 and React.js. Both ES6 and React have many more

features and concepts that you can explore as you become more familiar with them.

Shree h. N. Shukla College of i.t. & mgmt.
(Affiliated To Saurashtra University)

 ES6 Classes, functions & Promises REACTJS

 ES6 Classes
ES6 introduced a more convenient syntax for creating classes in JavaScript, providing a

cleaner and more structured way to implement object-oriented programming. In React,

classes are often used to define components. Here's a basic example:

 javascript
// Class Component

class MyComponent extends React.Component {

 constructor(props) {

 super(props);

 this.state = {

 message: "Hello, React!"

 };

 }

 render() {

 return <div>{this.state.message}</div>;

 }

}

In this example, MyComponent is a class component that extends React.Component. The

constructor method is where you initialize the component's state, and the render method

returns the JSX to be rendered.

 Functions:
In ES6, arrow functions provide a concise syntax for writing functions, especially when

used in the context of React. Here's a simple example:

 javascript

// Functional Component using Arrow Function

const FunctionalComponent = (props) => {

 return <div>{props.message}</div>;

};

Arrow functions automatically bind this, which can be beneficial when dealing with

event handlers or callbacks within a React component.

Shree h. N. Shukla College of i.t. & mgmt.
(Affiliated To Saurashtra University)

 Promises:
Promises are a pattern for handling asynchronous operations in a more readable and

manageable way. In React, Promises are often used when dealing with data fetching or

other asynchronous tasks. Here's a basic example:

 javascript

// Asynchronous Data Fetching using Promises

const fetchData = () => {

 return new Promise((resolve, reject) => {

 // Simulating a network request

 setTimeout(() => {

 const data = { message: "Data fetched successfully!" };

 resolve(data);

 }, 2000);

 });

};

// Using the Promise in a React component

class DataComponent extends React.Component {

 componentDidMount() {

 fetchData()

 .then((data) => {

 console.log(data.message);

 // Update state or perform other actions with the data });

 .catch((error) => {

 console.error("Error fetching data:", error);

 }); }

 render() {

 return <div>Loading data...</div>;

 }}

In this example, the fetchData function returns a Promise, and the DataComponent class

component uses this Promise to handle asynchronous data fetching within the

componentDidMount lifecycle method.

These ES6 features contribute to cleaner and more maintainable code in React

applications, making it easier to manage state, handle events, and deal with asynchronous

Shree h. N. Shukla College of i.t. & mgmt.
(Affiliated To Saurashtra University)

operations.

Express JS

 Setting up an app with ExpressJS

Setting up a full-stack web application with Express.js for the backend and React.js for

the frontend involves a few steps. Below is a basic guide on how you can set up a simple

project. Ensure that you have Node.js and npm (Node Package Manager) installed on

your machine.

1. Create the Express.js Backend:
Step 1: Initialize a new Node.js project

Open your terminal and run the following commands:

Step 2: Install Express.js

Step 3: Create a basic Express.js server

Create a file named server.js:

Shree h. N. Shukla College of i.t. & mgmt.
(Affiliated To Saurashtra University)

Step 4: Start the Express.js server

Run the following command in your terminal

This will start your Express.js server at http://localhost:5000.

2. Create the React.js Frontend:
Step 1: Initialize a new React.js project

Open a new terminal and navigate to the root folder of your project:

Step 2: Start the React development server

Navigate to the client folder:

http://localhost:5000/

Shree h. N. Shukla College of i.t. & mgmt.
(Affiliated To Saurashtra University)

This will start your React development server at http://localhost:3000.

3. Connect Frontend and Backend:
By default, the React development server runs on http://localhost:3000, and the Express

server runs on http://localhost:5000. To connect them, you can use a proxy.

In the client folder, add a package.json file if it doesn't exist, and add the following line:

Now, when you make API requests from your React components, they will be

automatically proxied to the Express server.

4. Test the Setup:
Update your client/src/App.js to make a request to your Express server:

http://localhost:3000/

Shree h. N. Shukla College of i.t. & mgmt.
(Affiliated To Saurashtra University)

Now, when you run both the Express.js server and the React.js development server, you

should see "Hello from Express!" displayed on your React app.

This is a basic setup. Depending on your project requirements, you might need additional

configurations, middleware, and folder structures. For production, you may consider

setting up a build process and deploying your application to a hosting service.

Express.js Routing
Express.js provides a simple and effective way to define routes for your server. You can

use the express.Router to organize your routes into modular components. Here's an

example:

1)Create a routes folder:

Create a new folder named routes in your project's root directory.

2)Define routes in Express:

Inside the routes folder, create a file named api.js:

3)Use the routes in your Express app:

In your main server.js file, import and use the router:

Shree h. N. Shukla College of i.t. & mgmt.
(Affiliated To Saurashtra University)

Now, your Express app will respond to requests at http://localhost:5000/api.

 React.js Routing:

React.js uses the ‘react-router-do’ library to handle client-side routing. Here's a basic

setup:

1)Install ‘react-router-dom’:

In your ‘client’ directory, install the ‘react-router-dom’ library:

2)Define routes in React:

Update your client/src/App.js to use react-router-dom:

Shree h. N. Shukla College of i.t. & mgmt.
(Affiliated To Saurashtra University)

3)Create components for each route:

In the client/src/components folder, create Home.js and About.js components:

Shree h. N. Shukla College of i.t. & mgmt.
(Affiliated To Saurashtra University)

Now, when you run your application, you can navigate between the Home and About

pages on the client side. The URLs will be handled by the React Router.

Remember to customize the routes and components based on your application's

requirements. Additionally, for more complex applications, you might want to explore

nested routes, route parameters, and other features provided by react-router-dom.

Shree h. N. Shukla College of i.t. & mgmt.
(Affiliated To Saurashtra University)

 Connecting views with templates

In React.js, the concept of "templates" is typically referred to as JSX (JavaScript XML).

JSX is a syntax extension for JavaScript that looks similar to XML or HTML but allows

you to write React components in a more declarative way. JSX code is then transpiled to

JavaScript before being executed in the browser.

Here's a basic example of connecting views with JSX templates in React.js:

Assuming you have a React component in a file named MyComponent.js:

In this example, the MyComponent function returns JSX, which represents the structure

of the component. You can include HTML-like tags and create a hierarchy of

components. JSX is expressive and makes it easy to visualize the UI structure.

To use this component in another file (e.g., App.js), you would import it and include it in

the JSX code:

Shree h. N. Shukla College of i.t. & mgmt.
(Affiliated To Saurashtra University)

In this example, MyComponent is imported and used within the App component's JSX.

This is a common pattern in React applications where you compose your UI by

combining smaller, reusable components.

Remember to use proper file paths when importing components. Also, be aware that

React components should start with an uppercase letter to distinguish them from regular

HTML elements.

This approach allows you to create modular and maintainable code by breaking down

your UI into smaller, reusable components. Each component can have its own JSX

template and logic, making it easier to manage and update your application.

Shree h. N. Shukla College of i.t. & mgmt.
(Affiliated To Saurashtra University)

 configurations and error handling.
Configurations and error handling are crucial aspects of building robust and maintainable

React applications. Here's a guide on some common configurations and best practices for

error handling in React.js.

Configurations:
1. Babel Configurations:

Babel is used to transpile JSX and ES6+ JavaScript code into browser-compatible code.

You typically have a .babelrc file in your project for Babel configurations:

2. ESLint Configurations:

ESLint is a static code analysis tool used to find and fix problems in your JavaScript

code. It helps enforce coding standards and identify potential issues. A common ESLint

configuration might look like this:

Json

{

 "extends": ["eslint:recommended", "plugin:react/recommended"],

 "plugins": ["react"],
 "rules": {

 "react/prop-types": 0, // Disable prop-types rule for functional components

 "no-console": "warn"

 },
 "parserOptions": {

 "ecmaVersion": 2020,

 "sourceType": "module",
 "ecmaFeatures": {

 "jsx": true

 }
 }

}

Shree h. N. Shukla College of i.t. & mgmt.
(Affiliated To Saurashtra University)

3. Webpack Configurations:

Webpack is a module bundler used to bundle JavaScript files and other assets. Here's a

simplified example of a webpack.config.js file:

Shree h. N. Shukla College of i.t. & mgmt.
(Affiliated To Saurashtra University)

 Error Handling:
1. Error Boundaries:

React provides a concept called "Error Boundaries" to handle JavaScript errors anywhere in a

component tree. You can define an error boundary component using the componentDidCatch

lifecycle method:

2. Handling HTTP Errors:

When making asynchronous requests in React, handle HTTP errors gracefully using

promises or the async/await syntax. For example:

Shree h. N. Shukla College of i.t. & mgmt.
(Affiliated To Saurashtra University)

These are just some basic configurations and error handling practices. Depending on your

project setup and requirements, you may need additional tools and practices, such as setting

up a testing framework (e.g., Jest), configuring a state management library (e.g., Redux), or

integrating with specific APIs and services for error reporting. Always tailor your approach

to the specific needs and scale of your React application.

	 Express JS & Java Script
	 How to write JavaScript code into html page?
	Syntax:
	For Example:
	EXPLAIN JAVASCRIPT VARIABLES
	NOTE: it is not compulsory to declare variable in JavaScript before its use.
	COMPARISION OPERATOR:
	CONDITIONAL OPERATORS:
	Syntax: (1)
	Example:
	IF STATEMENT:
	IF…ELSE IF…ELSE STATEMENT:
	The Break Statement
	 EXPLAIN DIALOG BOXES IN JAVASCRIPT
	⯌ Alert Box
	PROMPT BOX
	FOR LOOP:
	WHILE LOOP:
	
	 (1)
	 (2)
	 (3)
	 (4)
	 (5)
	 (6)
	 (7)
	 (8)
	 (9)
	 (10)
	 (11)
	Give difference between While loop & For loop
	Give difference between Break & Continue.
	Declaring Function:
	Place of Declaration:
	The return Statement
	BUILT IN FUNCTION IN JAVASCRIPT
	Purpose:
	Purpose: (1)
	2) concat()
	Purpose: (2)
	Purpose: (3)
	5) Replace:
	Purpose: (4)
	7) substr():
	8) substring():
	Purpose: (5)
	10) toLowerCase():
	1) abs()
	Purpose: (6)
	3) floor():
	Purpose: (7)
	5) random():
	6) round():
	7) max():
	Purpose: (8)
	8) min():
	1) Date()
	Purpose: (9)
	2) getDate():
	Purpose: (10)
	3) getDay():
	Purpose: (11)
	4) getMonth():
	5) getYear():
	Purpose: (12)
	1) getFullYear():
	Purpose: (13)
	Purpose: (14)
	3) getMinutes():
	Purpose: (15)
	6) getSeconds():
	7) getMiliSeconds():
	Purpose: (16)
	8) setDate():
	Purpose: (17)
	10) setYear():
	11) setFullYear():
	Purpose: (18)
	13) setMinutes():
	14) setSeconds():
	1) join()
	2) reverse()
	Purpose: (19)
	4) push()
	Purpose: (20)
	6) sort():
	1. onblur Event : When a user leaves an input field
	Note : When you leave the input field, a function is triggered which transforms the input textto upper case.
	2. onblur Event : When a user changes the content of an
	input field
	3. onchange Event : When a user selects a dropdown value
	4. onfocus Event : When an input text field gets focus
	5. onsubmit Event : When a user clicks the submit button
	6. onreset Event : When a user clicks the reset button
	7. onkeypress Event : When a user is pressing / holding down a key
	Note : A function is triggered when the user is pressing a key in the input field
	Note: A function is triggered when the user releases a key in the input field. The function transforms the character to upper case.
	10. ondblclick Event : When a text is double clicked
	11. onload Event : When the page has been loaded
	12. onunload Event : When the browser closes
	the document
	 EXPLAIN DOCUMENT OBJECT
	 EXPLAIN HISTORY OBJECT
	 Property of History Object:
	1. length:
	2. current:
	3. next:
	4. previous:
	 Methods of History Object:
	2. forward():
	3. go():
	 EXPLAIN NAVIGATOR OBJECT.
	Properties
	 Example of invalid email id
	JavaScript code to validate an email id
	<script>
	<body>
	<script> (1)
	</script>
	</form>
	</form> (1)
	ES6 Overview & Basics REACT JS
	 ES6 Overview:
	ECMAScript 2015, commonly known as ES6, brought significant enhancements to JavaScript, making the language more expressive and powerful. Some key features of ES6 include:
	1)Let and Const Declarations:
	 let allows you to declare block-scoped variables.
	 const declares constants with block scope.
	 javascript
	let variableName = "some value";
	const PI = 3.14159;
	2)Arrow Functions:
	 A concise way to write functions.
	 javascript (1)
	const add = (a, b) => a + b;
	3)Template Literals:
	 A more readable way to concatenate strings.
	 javascript (2)
	const name = "John";
	const greeting = `Hello, ${name}!`;
	4)Destructuring Assignment:
	 Extract values from objects or arrays into distinct variables.
	 javascript (3)
	const person = { name: "Alice", age: 30 };
	const { name, age } = person;
	5)Classes:
	 A more straightforward way to create constructor functions and prototype-based inheritance.
	 javascript (4)
	class Animal
	{
	constructor(name)
	{ (1)
	this.name = name;
	}
	speak() {
	console.log(`${this.name} makes a sound.`);
	} (1)
	} (2)
	6)Modules:
	 Import and export functionality between different JavaScript files.
	 javascript (5)
	// export.js
	export const PI = 3.14159;
	// import.js
	import { PI } from './export';
	 React.js Basics:
	React.js is a JavaScript library for building user interfaces, developed by Facebook. Here are some fundamental concepts:
	1)Components:
	 Building blocks of a React application.
	 Can be functional or class-based.
	 Javascript
	// Functional Component
	const MyComponent = () => {
	return <div>Hello, World!</div>;
	};
	// Class Component
	class MyClassComponent extends React.Component {
	render() {
	return <div>Hello, World!</div>; (1)
	} (3)
	} (4)
	2)JSX (JavaScript XML):
	 Syntax extension for JavaScript, used with React to describe what the UI should look like.
	 javascript (6)
	const element = <h1>Hello, JSX!</h1>;
	3)Props:
	 Data passed from a parent component to a child component.
	 javascript (7)
	const Greeting = (props) => {
	return <div>Hello, {props.name}!</div>;
	}; (1)
	4)State:
	 Internal data storage for a component.
	 Changes to state trigger a re-render of the component.
	 javascript (8)
	class Counter extends React.Component {
	constructor() {
	super();
	this.state = { count: 0 };
	} (5)
	render() { (1)
	return <div>Count: {this.state.count}</div>;
	} (6)
	} (7)
	5)Lifecycle Methods:
	• Methods that are called at different points in the life cycle of a component.
	 javascript (9)
	class MyComponent extends React.Component { componentDidMount() {
	// Called after the component is rendered to the DOM
	} (8)
	componentWillUnmount() {
	// Called just before the component is removed from the DOM
	} }
	6)Handling Events:
	 React uses camelCase for event names.
	 javascript (10)
	const Button = () => {
	const handleClick = () => {
	console.log("Button clicked!");
	}; (2)
	return <button onClick={handleClick}>Click Me</button>;
	}; (3)
	These are just the basics of ES6 and React.js. Both ES6 and React have many more features and concepts that you can explore as you become more familiar with them.
	 ES6 Classes
	ES6 introduced a more convenient syntax for creating classes in JavaScript, providing a cleaner and more structured way to implement object-oriented programming. In React, classes are often used to define components. Here's a basic example:
	 javascript (11)
	// Class Component (1)
	class MyComponent extends React.Component {
	constructor(props) {
	super(props);
	this.state = {
	message: "Hello, React!"
	}; (4)
	} (9)
	render() { (2)
	return <div>{this.state.message}</div>;
	} (10)
	} (11)
	In this example, MyComponent is a class component that extends React.Component. The constructor method is where you initialize the component's state, and the render method returns the JSX to be rendered.
	 Functions:
	In ES6, arrow functions provide a concise syntax for writing functions, especially when used in the context of React. Here's a simple example:
	 javascript (12)
	// Functional Component using Arrow Function
	const FunctionalComponent = (props) => {
	return <div>{props.message}</div>;
	}; (5)
	Arrow functions automatically bind this, which can be beneficial when dealing with event handlers or callbacks within a React component.
	 Promises:
	Promises are a pattern for handling asynchronous operations in a more readable and manageable way. In React, Promises are often used when dealing with data fetching or other asynchronous tasks. Here's a basic example:
	 javascript (13)
	// Asynchronous Data Fetching using Promises
	const fetchData = () => {
	return new Promise((resolve, reject) => {
	// Simulating a network request
	setTimeout(() => {
	const data = { message: "Data fetched successfully!" };
	resolve(data);
	}, 2000);
	});
	}; (6)
	// Using the Promise in a React component
	class DataComponent extends React.Component {
	componentDidMount() {
	fetchData()
	.then((data) => {
	console.log(data.message);
	// Update state or perform other actions with the data });
	.catch((error) => {
	console.error("Error fetching data:", error);
	}); }
	render() { (3)
	return <div>Loading data...</div>;
	}}
	In this example, the fetchData function returns a Promise, and the DataComponent class component uses this Promise to handle asynchronous data fetching within the componentDidMount lifecycle method.
	These ES6 features contribute to cleaner and more maintainable code in React applications, making it easier to manage state, handle events, and deal with asynchronous operations.
	Setting up a full-stack web application with Express.js for the backend and React.js for the frontend involves a few steps. Below is a basic guide on how you can set up a simple project. Ensure that you have Node.js and npm (Node Package Manager) inst...
	1. Create the Express.js Backend:
	Step 1: Initialize a new Node.js project
	Open your terminal and run the following commands:
	Step 2: Install Express.js
	Step 3: Create a basic Express.js server
	Create a file named server.js:
	Step 4: Start the Express.js server
	Run the following command in your terminal
	This will start your Express.js server at http://localhost:5000.
	2. Create the React.js Frontend:
	Step 1: Initialize a new React.js project
	Open a new terminal and navigate to the root folder of your project:
	Step 2: Start the React development server
	Navigate to the client folder:
	This will start your React development server at http://localhost:3000.
	3. Connect Frontend and Backend:
	By default, the React development server runs on http://localhost:3000, and the Express server runs on http://localhost:5000. To connect them, you can use a proxy.
	In the client folder, add a package.json file if it doesn't exist, and add the following line:
	Now, when you make API requests from your React components, they will be automatically proxied to the Express server.
	4. Test the Setup:
	Update your client/src/App.js to make a request to your Express server:
	Now, when you run both the Express.js server and the React.js development server, you should see "Hello from Express!" displayed on your React app.
	This is a basic setup. Depending on your project requirements, you might need additional configurations, middleware, and folder structures. For production, you may consider setting up a build process and deploying your application to a hosting service.
	Express.js Routing
	Express.js provides a simple and effective way to define routes for your server. You can use the express.Router to organize your routes into modular components. Here's an example:
	1)Create a routes folder:
	Create a new folder named routes in your project's root directory.
	2)Define routes in Express:
	Inside the routes folder, create a file named api.js:
	3)Use the routes in your Express app:
	In your main server.js file, import and use the router:
	Now, your Express app will respond to requests at http://localhost:5000/api.
	 React.js Routing:
	React.js uses the ‘react-router-do’ library to handle client-side routing. Here's a basic setup:
	1)Install ‘react-router-dom’:
	In your ‘client’ directory, install the ‘react-router-dom’ library:
	2)Define routes in React:
	Update your client/src/App.js to use react-router-dom:
	3)Create components for each route:
	In the client/src/components folder, create Home.js and About.js components:
	Now, when you run your application, you can navigate between the Home and About pages on the client side. The URLs will be handled by the React Router.
	Remember to customize the routes and components based on your application's requirements. Additionally, for more complex applications, you might want to explore nested routes, route parameters, and other features provided by react-router-dom.
	 Connecting views with templates
	In React.js, the concept of "templates" is typically referred to as JSX (JavaScript XML). JSX is a syntax extension for JavaScript that looks similar to XML or HTML but allows you to write React components in a more declarative way. JSX code is then t...
	Here's a basic example of connecting views with JSX templates in React.js:
	Assuming you have a React component in a file named MyComponent.js:
	In this example, the MyComponent function returns JSX, which represents the structure of the component. You can include HTML-like tags and create a hierarchy of components. JSX is expressive and makes it easy to visualize the UI structure.
	To use this component in another file (e.g., App.js), you would import it and include it in the JSX code:
	In this example, MyComponent is imported and used within the App component's JSX. This is a common pattern in React applications where you compose your UI by combining smaller, reusable components.
	Remember to use proper file paths when importing components. Also, be aware that React components should start with an uppercase letter to distinguish them from regular HTML elements.
	This approach allows you to create modular and maintainable code by breaking down your UI into smaller, reusable components. Each component can have its own JSX template and logic, making it easier to manage and update your application.
	Configurations and error handling are crucial aspects of building robust and maintainable React applications. Here's a guide on some common configurations and best practices for error handling in React.js.
	Configurations:
	1. Babel Configurations:
	Babel is used to transpile JSX and ES6+ JavaScript code into browser-compatible code. You typically have a .babelrc file in your project for Babel configurations:

