Seat No. \qquad
F8X-003-1161001
M. Sc. (Sem. I) Examination

December - 2022
Mathematics - 1001
(Algebra - I)
Faculty Code : 003
Subject Code : 1161001
Time : $2 \frac{1}{2}$ Hours / Total Marks : 70

Instructions : (1) There are five questions.
(2) All questions are compulsory.
(3) Each question carries 14 marks.

1 Answer any seven short questions :
(1) Define with an example : Simple Group.
(2) Define a subgroup of a group G. Write down at least two subgroups of $(\mathbb{Z},+)$.
(3) Prove or disprove, that S_{3} is a simple group.
(4) Let G be a group and H be a subgroup of G. Prove that, $a b^{-1} c^{-1} \in H, \forall a, b, c \in H$.
(5) Define terms : Cycle and Transposition in a symmetric group S_{n}.
(6) Define maximal normal subgroup of a group G.
(7) Define a complete group and give an example of a complete group.
(8) When group G act on a non-empty set X ? Define an action of a group G on the non-empty set X.
(9) Let G be the group with an internal direct product of its normal subgroups $N_{1}, N_{2}, \ldots \ldots ., N_{k}$. Let $x \in N_{i}$ and $y \in N_{j}$, for some $i \neq j$ and $i, j \in\{1,2, \ldots, k\}$. Prove that $x y=y x$.
(10) Define term : Integral Domain. Also prove that, every field is an integral domain.

2 Attempt any two :
(1) State and prove, Second Isomorphism Theorem of Groups.
(2) State and prove, Second Sylow's Theorem.
(3) Let G be a group and H be a subgroup of G. Suppose $O(H)=\frac{1}{2} O(G)$. Prove that, H is a maximal normal subgroup of G.

3 Attempt any one :
(1) Let R be a ring. Prove that, for any positive integer n, any ideal of $M_{n}(R)$, [the ring of all the $n \times n$ matrices over R] is given by $M_{n}(I)$, where I ranges through all the ideals of R.
(2) State and prove, Third Sylow's Theorem.

4 Attempt following two :
(1) Let G_{1}, G_{2} be two groups, N_{1} be a normal subgroup of G_{1} and N_{2} be a normal subgroup of G_{2}. In standard notation prove that,
(i) $N_{1} \times N_{2}$ is a normal subgroup of $G_{1} \times G_{2}$ and
(ii) $\frac{G_{1} \times G_{2}}{N_{1} \times N_{2}} \simeq\left[\frac{G_{1}}{N_{1}}\right] \times\left[\frac{G_{2}}{N_{2}}\right]$.
(2) Prove or disprove, the center of a group G is a normal subgroup of G. Also prove that, G is an abelian group if and only if its center is itself.

5 Attempt any two :

(1) Let G be a finite group and $O(G)=48$. Prove that, G can't be a simple group.
(2) Let R be a ring and I be an ideal of R. Let $\phi: R \rightarrow \frac{R}{I}$ defined by $\phi(r): r+I, \forall r \in R$, where $\frac{R}{I}$ is the quotient ring of R by the ideal I. Prove that, ϕ is a surjective ring homomorphism and $\operatorname{ker} \phi=I$.
(3) Let $\phi: G \rightarrow G^{\prime}$ be a group homomorphism. In standard notation prove that, ker ϕ is normal subgroup of G and $\phi(G)$ is subgroup of G^{\prime}.
(4) State and prove, Cayley's Theorem.

SBS-003-1161001
 M. Sc. (Sem. I) Examination
 February - 2022
 Mathematics: CMT-1001
 (Algebra-I)

 Faculty Code : 003

 Faculty Code : 003

 Subject Code : 1161001

 Subject Code : 1161001}

Scat No. \qquad

Time : $2 \frac{1}{2}$ Hours]

[Total Marks : 70

Instructions : (1) Attempt any five questions from the following.
(2) There are total ten questions.
(3) Each question carries equal marks.

1 Answer following seven questions:
$7 \times 2=14$
(i) Define terms : Cycle and Transposition in a symmetric group S_{n}.
(ii) Define maximal normal subgroup of a group G.
(iii) Define a complete group and give an example of a complete group.
(iv) Let G_{1}, G_{2} be two groups and $a, b \in G_{1}, c, d \in G_{2}$. Write down the identity element of $G_{1} \times G_{2}$ and $(a b, c d)^{-1}$.
(v) Define a prime ideal of a ring R. Give an example of a prime ideal of $(\mathbb{Z},+, \cdot)$.
(vi) Prove or disprove, A_{3} is a simple group.
(vii) In standard notation define $Z(G)$, the center of a group G . Is it a normal subgroup of G ? $(\mathrm{Y} / \mathrm{N})$.

2 Answer following seven questions :
$7 \times 2=14$
(i) Define maximal normal subgroup of a group G. Write down a maximal normal subgroup of S_{n}.
(ii) In standard notation, define an inner automorphism T_{g} of a group G by an element $g \in G$. Also define $\operatorname{In}(G)$.
(iii) Prove or disprove, $Z\left(S_{n}\right)=\{e\}$.
(iv) Write down four subgroups of S_{3}, where $S_{3}=\left\{e, \sigma, \sigma^{2}, \psi, \sigma \psi, \sigma^{2} \psi\right\}$.
(v) Let G be a finite group and a prime p divide to $\mathrm{O}(\mathrm{G})$. Define a p-Sylow subgroup of G .
(vi) Write down $\sigma \in S_{9}$ as a finite product of disjoint cycles, where $\sigma=\left(\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 4 & 3 & 9 & 5 & 8 & 1 & 7 & 6 & 2\end{array}\right)$.
(vii) Let G be a group and N be a normal subgroup of G . In standard notation what is G / N ? Write down the identity element of G / N.

3 Answer following two questions :
(a) Let X, Y be two non-empty sets and $f: X \rightarrow Y$ be a bijection. Prove that, S_{x} and S_{y} both are isomorphic groups.
(b) Let G_{1}, G_{2} be two groups, N_{1} be a normal subgroup of G_{1} and N_{2} be a normal subgroup of G_{2}. In standard notation prove that,
(i) $N_{1} \times N_{2}$ is a normal subgroup of $G_{1} \times G_{2}$ and
(ii) $G_{1} \times G_{2} / N_{1} \times N_{2} \simeq\left[G_{1} / N_{1}\right] \times\left[G_{2} / N_{2}\right]$

4 Answer following two questions :
(a) State and prove, First isomorphism theorem of groups.
(b) State and prove, Second Sylow's theorem.

5 Answer following two questions :
(a) State and prove, Third isomorphism theorem of groups.
(b) State and prove, Second isomorphism theorem of rings.

6 Answer following two questions :
(1) Let G be a group and H be a normal subgroup of C . Prove that, H is a maximal normal subgroup of G if any only if G / H is a simple group.
(2) Let G be a group. In standard notation prove that, In (G) is a subset of Aut (G) and it is also a subgroup of Aut (G).

7 Answer following two questions :
(a) Let G be a non-abelian group of order six. Prove that, $G \simeq S_{3}$.
(b) For a group G, in standard notation prove that,
(i) G^{\prime} is normal subgroup of G .
(ii) G / G, is an abelian group.
(iii) For any normal subgroup H of G , if G / H is abelian, prove that G^{\prime} is a subset of H.

8 Answer following two questions: $2 \times 7=14$
(1) Let $f: R \rightarrow S$ be a ring homomorphism. Prove that, $\{r \in R / f(r)=0\}$ is an ideal of R.
(2) Let R be a ring and $1 \in R$. Let M be an ideal of R with $M \neq R$. Prove that, M is a maximal ideal of R if any only if R / M is a field.

9 Answer following two questions :
(a) Let F be a field. Prove that, F has precisely two ideals.
(b) Let R be a ring and A, B be two ideals of R . Prove that, $\left\{\sum_{i=1}^{t} a_{i} b_{i} / t \geq 1, a_{i} \in A, b_{i} \in B\right.$, for all $\left.i=1,2,3, \ldots, \ldots, t\right\}$ and $A \cap B$ both are ideals of R .

10 Answer following question :
Let $\phi: G \rightarrow G^{\prime}$ be a surjective group homomorphism. Prove that,
(i) $H<G \Rightarrow \phi(H)<G^{\prime}$,
(ii) $H^{\prime}<G^{\prime} \Rightarrow \phi^{-1}\left(H^{\prime}\right)<G$,
(iii) $H \triangleleft G \Rightarrow \phi(H) \triangleleft G^{\prime}$,
(iv) $H^{\prime} \triangleleft G^{\prime} \Rightarrow \phi^{-1}\left(H^{\prime}\right) \triangleleft G$,
(v) $H<G$ with $\operatorname{Ker} \phi \subseteq H \Rightarrow H=\phi^{-1}(\phi(H))$ and
(vi) $\phi\left(\phi^{-1}(K)\right)=K$, for any subgroup K of G^{\prime}.
$|||\mid$
MBN-003-1161001 Seat No.
M. Sc. (Sem. I) ExaminationFebruary - 2021
Mathematics : Paper - CM'T-1001(Algebra-I)
Faculty Code : 003Subject Code : 1161001
Time: $\mathbf{2} \frac{1}{2}$ Hours][Total Marks : 70
Instructions : (1) Answer any five questions.
(2) Each question carries 14 marks.
1 Answer following seven questions :$7 \times 2=14$
(i) Define a normal subgroup of a group G and write down a normal subgroups of S_{3}, where

$$
S_{3}=\left\{e, \sigma, \sigma^{2}, \psi, \sigma \psi, \sigma^{2} \psi\right\}
$$

(ii) In standard notation, prove or disprove that S_{3} is an abelian group.
(iii) Let $S_{3}=\left\{e, \sigma, \sigma^{2}, \phi, \sigma \phi, \sigma^{2} \phi\right\}$. Take $K=\{e, \phi\}$.

Write down all the left cosets of K in S_{3}.
(iv) Let $\mathrm{G}_{1}, \mathrm{G}_{2}$ be two groups and $a, b \in G_{1}, c, d \in G_{2}$. Write down the identity element of $G_{1} \times G_{2}$ and $(a b, c d)^{-1}$.
(v) Define a prime ideal of a ring R. Give an example of a prime ideal of $(\mathbb{Z},+, \cdot)$.
(vi) Prove or disprove A_{3} is a simple group.
(vii) In standard notation define $Z(G)$, the center of a group G. Is it a normal subgroup of G ? (Y / N).

2 Answer following seven questions :
(i) Define maximal normal subgroup of a group G. Write down a maximal normal subgroup of S_{n}.
(ii) In standard notation, define an inner automorphism T_{g} of a group G by an element $g \in G$. Also define $I_{n}(G)$.
(iii) Prove or disprove $Z\left(S_{n}\right)=\{\mathrm{e}\}$.
(iv) Prove or disprove A_{4} has no subgroup of order six.
(v) Let G be a group and $a \in G$. Prove that $N(a)=\{g \in G / g a=a g\}$ is a subgroup of G.
(vi) Define term: External direct product of groups.
(vii) Define ring homomorphism and give two ring homomorphisms on a ring Z into Z.

3 Answer following two questions :
(a) Let X, Y be two non-empty sets and $f: X \rightarrow Y$ be a bijection. Prove that, S_{X} and S_{Y} both are isomorphic groups.
(b) Let G_{1}, G_{2} be two groups, N_{1} be a normal subgroup of G_{1} and N_{2} be a normal subgroup of G_{2}. In standard notation prove that :
(i) $N_{1} \times N_{2}$ is a normal subgroup of $G_{1} \times G_{2}$ and
(ii) $\quad G_{1} \times G_{2} / N_{1} \times N_{2} \simeq\left[G_{1} / N_{1}\right] \times\left[G_{2} / N_{2}\right]$.

4 Answer following two questions $2 \times 7=14$
(a) State and Prove First Isomorphism Theorem of Rings.
(b) State and Prove Second Sylow's Theorem.

5 Answer following two questions :
(a) State and Prove Third Isomorphism Theorem of Rings.
(b) State and Prove Second Isomorphism Theorem of Groups.

6 Answer following two questions :
(a) Let G be a group and H be a subgroup of G. Suppose $O(H)=\frac{1}{2} O(G)$. Prove that, H is a maximal normal subgroup of G.
(b) Prove or disprove the center of a group G is a normal subgroup of G. Also prove that, G is an ablelian group if and only if its center is itself.

7 Answer following two questions :
$2 \times 7=14$
(a) Let G be a non-abelian group of order six. Prove that, $G \simeq S_{3}$.
(b) For a group G, in standard notation prove that,
(i) G^{\prime} is normal subgroup of G.
(ii) G / G^{\prime} is an abelian group.
(iii) For any normal subgroup H of G, if G / H is abelian, then prove that G^{\prime} is a subset of H.

8 Answer following two questions: $2 \times 7=14$
(a) Let $G=<g\rangle$ be a cyclic group and $O(G)=m n$, where m and n are relatively primes. Let $H=\left\langle g^{m}\right\rangle$ and $K=\left\langle g^{n}\right\rangle$. Prove that G is the internal direct product of its subgroups H and K.
(b) Let G be a finite group and p is divisor of $O(G)$, for some prime p. Let P be a sylow p-subgroup of G. Prove that, P is only Sylow p-subgroup of G if and only if P is the normal subgroup of G.

9 Answer following two questions:
$2 \times 7=14$
(a) Let F be a field. Prove that, F has precisely two ideals.
(b) Let R be a ring and A, B be two ideals of R. Prove that $\left\{\sum_{i}^{t} a_{i} b_{i} / t \geq 1, a_{i} \in A, b_{i} \in B\right.$, for all $\left.\mathrm{i}=1,2,3, \ldots \ldots, t\right\}$ and $A \cap B$ both are ideals of R.

10 Answer following one question :
(1) Let R be a ring and $1 \in R$. Let M be an ideal of R with M \# R. Prove that, following statement are equivalent.
(a) M is a maximal ideal of R.
(b) R / M has no non-trivial ideal.
(c) $M+(x)=R$, for every $x \in R-M$

JBD-003-1161001 Seat No. \qquad
M. Sc. (Sem. I) (CBCS) Examination

December - 2019
Mathematics : CMT - 1001
(Algebra - I)
Faculty Code : 003
Subject Code : 1161001
Time: $\mathbf{2} \frac{\mathbf{1}}{\mathbf{2}}$ Hours]
[Total Marks : 70
Instructions : (1) All questions are compulsory.
(2) Each question carries 14 marks.

1 Answer any seven questions:
$7 \times 2=14$
(i) Write down two subgroups of S_{3} which are not normal, where $S_{3}=\left\{e, \sigma, \sigma^{2}, \psi, \sigma \psi, \sigma^{2} \psi\right\}$.
(ii) Define a simple group and give an example of a simple group. Is A_{4} a simple group ? (Y/N).
(iii) Prove or disprove that S_{3} is a simple group.
(iv) Define an ideal I of a ring R. Let $a, b, c \in I$. Deduce that $a-b-2 c \in I$.
(v) Let G be a finite group and a prime p divide to $\mathrm{o}(\mathrm{G})$. Define a p-Sylow subgroup of G.
(vi) Let A, B, C ideals of a ring R. Prove that $A \cap B \cap C$ is also an ideal of R.
(vii) Let G be a finite group with $o(G)=147$. Write down order of 3 -Sylow and 7 -Sylow subgroups of G.
(viii) Define a prime ideal of a ring R. Is all prime ideals of ($\mathbb{Z},+, \cdot)$ are maximal ideals ? Justify.

2 Answer any two questions :
$2 \times 7=14$
(a) State and prove Third Fundamental Theorem of Groups.
(b) Let G be a group and
$G^{\prime}=\left\{\prod_{i-1}^{t} a_{i} b_{i} a_{i}^{-1} b_{i}^{-1} / a_{i}, b_{i} \in G, \forall i=1,2, \ldots ., t\right\}$ be the commutator subgroup G. In standard notation prove that G^{\prime} is a normal subgroup of G and G / G^{\prime} is an abelian group.
(c) Let G be a non-abelian group of order 6. Prove that G is isomorphic to S_{3}.

3 Answer any one question :
(a) (i) State and Prove Sylow's Third Theorem.
(ii) Let G be a finite abelian group and a prime p divide to $o(G)$. Let P be a Sylow p-subgroup of G.
Prove that P is only Sylow p-subgroup of $G \Leftrightarrow P$ is normal subgroup of G.
(b) Let R be a ring. Prove that for any positive integer n , any ideal of $M_{n}(R)$, the ring of all the nxn matrices over R is given by $M_{n}(I)$, where I ranges through all the ideals of R.
(c) Prove that $A_{n}(n \geq 5)$ is a simple group. For $n \geq 5$, prove that the collection of all normal subgroups of S_{n} is $\left\{\{e\}, A_{n}, S_{n}\right\}$.

4 Answer any two questions :
(a) State and Prove First Isomorphism Theorem of Rings.
(b) Let A, B be two ideals of a ring R. Define product $A B$ and sum $A+B$ of two ideals in R. Prove that $A B$, $A+B$ and $A B \cap(A+B)$ all are ideals of R.
(c) Let $f: R \rightarrow T$ be an onto ring homomorphism. Let \mathcal{C} the collection of ideals of R which contains $\operatorname{ker} f$ and \mathscr{D} be the collection of all ideals of T. Prove that there is a bijective map from \mathcal{C} into \mathscr{D}.

5 Answer any two questions :
$2 \times 7=14$
(a) Let G be a finite group, with $O(G)=p \cdot q$, where p and q both are primes $(p<q)$. If $p+q-1$, then prove that G must be a cyclic group.
(b) Let R be a commutative ring and M be an ideal of R. Prove that M is a maximal ideal of R if and only if R / M is a field.
(c) Let G be a group and N_{i} be normal subgroups of $G, \forall i=1,2, \ldots \ldots, n$. Prove that G is the internal direct product of $N_{1}, N_{2}, \ldots, N_{n}$ iff $G=N_{1} N_{2} . . N_{n}$ and $N_{i} \cap N_{1} . . N_{i-1} N_{i+1} . . N_{n}=\{e\}$, for every $i \in\{1,2, \ldots, n\}$.
(d) Prove that :
(i) Every irreducible element of a Principle Ideal Domain R is always a prime element of R and
(ii) Every Euclidean Domain is also Principle Ideal Domain.

Seat No.

F8Y-003-1161002

M. Sc. (Sem. I) Examination

December - 2022

Mathematics : Paper - CMT-1002
 (Real Analysis)

Faculty Code : 003
 Subject Code : 1161002

Time : $\mathbf{2} \frac{\mathbf{1}}{\mathbf{2}}$ Hours / Total Marks : 70

Instructions :

(1) There are total five questions.
(2) All questions are mandatory.
(3) Each question carries equal marks.

1 Answer any seven questions :
(1) Define Boolean algebra on a non-empty set X.
(2) Define Lebesgue outer measure of a subset E of \mathbb{R}.
(3) Write down $m^{*}(\mathbb{N})$ and $m^{*}([2,4] \cup(5,8))$.
(4) Describe that countable union of F_{σ} sets is F_{σ}.
(5) Define Lebesgue measurable set.
(6) Show that $m\left(E_{1} \cup E_{2}\right)+m\left(E_{1} \cap E_{2}\right)=m E_{1}+m E_{2}$ if E_{1} and E_{2} are measurable.
(7) Show that $|f|$ is integrable over a measurable set E then f is integrable over E.
(8) Define the term Convergence in measure.
(9) If f is integrable over a measurable set E and A, B are disjoint measurable subset of E then show that

$$
\int_{A \cup B} f=\int_{A} f+\int_{B} f .
$$

(10) Why is the condition $m^{*} A \geq m^{*}(A \cap E)+m^{*}\left(A \cap E^{C}\right)$ sufficient to become the set E is measurable ?

2 Answer any two of the following :
(1) Show that any Borel set is measurable.
(2) If $E_{1} \supseteq E_{2} \supseteq \cdots$ be a decreasing sequence of measurable sets with $m E_{1}<\infty$ then show that

$$
m\left(\bigcap_{n=1}^{\infty} E_{n}\right)=\lim _{n \rightarrow \infty} m E_{n}
$$

(3) If for given $\varepsilon>0, \exists$ a subset U of \mathbb{R} such that U is the union of finite number of open interval in \mathbb{R} with $m^{*}(U \Delta E)<\varepsilon$ then show that E is measurable.

3 Answer the following :
(1) State and prove Fatou's Lemma.
(2) State and prove Egoroffs theorem.
(1) If f, g are bounded measurable functions define on a measurable set E with $m \mathrm{E}<\infty$ then prove that $\int_{E} f+g=\int_{E} f+\int_{E} g$.
(2) If $f:[a, b] \rightarrow \mathbb{R}$ is bounded function and Riemann integrable over $[a, b]$ then prove that f is measurable and moreover $R \int_{a}^{b} f(x) d x=\int_{[a, b]} f(x) d x$.

4 Answer the following :
(1) If $\left\langle f_{n}\right\rangle$ is a sequence of measurable function defined on E and f is a real valued function defined on E such that $f_{n} \rightarrow f$ in measure on E then prove that there exists a subsequence $\left\langle f_{n_{k}}\right\rangle$ of $\left\langle f_{n}\right\rangle$ such that $f_{n_{k}} \rightarrow f$ almost everywhere on E.
(2) Prove that Lebesgue conyergence theorem holds good if convergence a.e. is replaced by convergence in measure.

5 Answer any two of the following :
(1) If f, g are measurable functions define on a measurable set E then show that the following hold :
(i) If f is integrable over a measurable set E then for any $c \in \mathbb{R}, c f$ is integrable over E and moreover

$$
\int_{E} c f=c \int_{E} f
$$

(ii) If f, g are integrable over E and $f \leq g$ almost everywhere on E then $\int_{E} f \leq \int_{E} g$.
(2) State and prove Holder's inequality.
(3) If $f:[a, b] \rightarrow \mathbb{R}$ is a function of bounded variation then prove that $P-N=f(b)-f(a)$ and $P+N=T$. Where P, N, T are positive, negative and total variation of f over [a, b] respectively.
(4) If $f:[a, b] \rightarrow \mathbb{R}$ is a bounded function and Riemann integrable over $[a, b]$ then prove that f is measurable
and moreover $R \int_{a}^{b} f(x) d x=\int_{[a, b]} f(x) d x$.

SBT-003-1161002

\qquad
M. Sc. (Sem. I) Examination

February - 2022
Mathematics : CMT-1002
(Real Analysis)

Faculty Code : 003
 Subject Code : 1161002

Time : $\mathbf{2} \frac{1}{2}$ Hours]
[Total Marks : 70

Instructions : (1) Answer any five questions.
(2) Each question carries $\mathbf{1 4}$ marks.
(3) There are 10 questions in total.

1 Answer the following seven questions:

(1) Define : Algebra of sets of a non empty set X .
(2) Let F_{1}, F_{2}, \ldots be F_{σ}-sets. Then prove that, $\bigcup_{i=1}^{\infty} F_{i}$ is also an F_{σ} - set.
(3) Define : G_{δ}-set. Justify that, a closed interval in \mathbb{R} is a G_{δ} - set.
(4) Give an example of a G_{δ} - set, which is not an F_{σ}-set. Also give an example of F_{σ}-set which is not a G_{δ}-set.
(5) Let $A \subseteq \mathbb{R}$. Then prove that, A is a $G_{\bar{\delta}}$-set if and only if A^{c} is an F_{σ}-set.
(6) Define : Borel field and Borel set.
(7) Using outer measure, prove that, $[1,2021]$ is not a countable subset of \mathbb{R}.

2 Answer the following seven questions :
(1) Define : Lebesgue outer measure of a subset A of \mathbb{R}.
(2) Write down $m^{*}(\mathbb{Q} \times \mathbb{N})$ and $m^{*}([1,3] \cap \mathbb{R})$.
(3) Let $E \subseteq \mathbb{R}$ and $m^{*} E=0$. Then prove that, E is a Legesgue measurable set.
(4) Let $E \in m$ and $\phi: E \rightarrow \mathbb{R}$ be a simple map with $\phi(E)=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$. Write down canonical representation of ϕ.
(5) Let $A, B, C \subseteq \mathbb{R}$. Let $m^{*} A=0$. Verify that, $m^{*}(A \cup B \cup C)=m^{*}(B \cup C)$.
(6) Prove or disprove, the continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ is a measurable function.
(7) Define : Measurable function. Also give an example of a measurable function on \square.

3 Answer the following two questions :
(1) Let $X \neq \phi$ and $C \subseteq P(X)$. Let A be the algebra on X, generated by C . Let $R_{1}=$ the σ-algebra on X , generated by C and $R_{1}=$ the σ-algebra on X , geneared by A . Then prove that, $R_{1}=R_{2}$.
(2) Prove that, Lebesgue outer measure of any interval is its length.

4 Answer the following two questions :
(1) Let $X \neq \phi$ and R be an algebra of sets on X . Let $\left\langle A_{i} \searrow \subseteq R\right.$ be a sequence. Then prove that, $\exists<B_{i}>\subseteq R$ such that B_{i} 's are mutually disjoint, $B_{i} \subseteq A_{i}, \forall_{i}=1,2, \ldots$. and for any $n \in \mathbb{N}$, $\bigcup_{i=1}^{n} B_{i}=\bigcup_{i=1}^{n} A_{i}$.
(2) Prove that, m is an algebra on \mathbb{R}, where m is the family of all measurable sets on \mathbb{R}.
(1) Let $E_{1}, E_{2} \in m$ then prove that, $m\left(E_{1} \cap E_{2}\right)+m\left(E_{1} \cap E_{2}\right)=m E_{1}+m E_{2}$, where m is the family of all measurable sets on \mathbb{R}.
(2) Let $f, b: E \rightarrow \mathbb{R}$ be two extended real valued measurable functions on a measurable set E . Let $c \in R$. Then prove that, $f+g, f+c, c f, g-f$ and $f g$ all ar measurable functions on E .

6 Answer the following two questions :
(1) Let $<E_{n}>\subseteq M$ and $E_{n+1} \subseteq E_{n}, \forall n \in \mathbb{N}$. Let $m\left(E_{1}\right)<\infty$. Then prove that, $m\left(\bigcap_{i=1}^{\infty} E_{i}\right)=\lim _{n \rightarrow \infty} m\left(E_{n}\right)$.
(2) (a) Prove that, $m^{*}(A+y)=m^{*} A, \forall A \subseteq \mathbb{R}$, where

$$
A+y=\{x+y / x \in A\}
$$

(b) Construct the Cantor set and show that, it is an uncountable, measurable set with required justification.

7 Answer the following two questions:
(1) Let $<f_{n}>$ be a sequence of non-negative measurable functions such that $f_{n} \leq f_{n+1}, \forall n \in \mathbb{N}$. Let
$f_{n}(x) \rightarrow f(x), \forall x \in E$. Then prove that, $\int_{E} f=\lim _{n} \int_{E} f_{n}$.
(2) Let g be an integrable function over E and $<f_{n}>$ be a sequence of measurable functions on E such that $\left|f_{n}\right| \leq g \forall n \in \mathbb{N}$ on E . Let $f(x)=\lim _{n} f_{n}(x)$ a.e. on E. Then prove that, f, f_{n} 's are integrable over $E, \forall n \in \mathbb{N}$ and $\int_{E} f=\lim _{n} \int_{E} f_{n}$.

8 Answer the following two questions :
(1) Let $f:[a, b] \rightarrow R$ be a bounded and measurable function. Let
$F:[a, b] \rightarrow R$ be given by $F(x)=F(a)+\int_{a}^{x} f(t) d t$ then prove that, $F^{\prime}(x)=f(x)$ a.e. on $[a, b]$.
(2) State and prove, Holder's inequality.

9 Answer the following one questions :
(1) Let f, g be bounded measurable functions on E and $m E<\infty$. Then prove that,
(a) $\int_{E}(a f+b g)=a \int_{E} f+b \int_{E} g, \forall a, b \in \mathbb{R}$
(b) $f \leq g$ a.e. on E then $\int_{E} f \leq \int_{E} g$.
(c) $f=g$ a.e. on E then $\int_{E} f=\int_{E} g$.
(d) If $a \leq f(x) \leq b, \forall x \in E$, then $a \leq \frac{1}{m E} \int_{E} f \leq b$.
(e) For any disjoint subset A and B of E ,

$$
\int_{A \cup B} f=\int_{A} f+\int_{B} f
$$

10 Answer the following one question :
(1) Let f be a bounded function on a measurable set E and $m E$ is finite. Then prove that,

$$
\inf _{\substack{\psi \geq f \\ \psi \text { is simple } E}} \int_{E} \psi=\sup _{\substack{\phi \leq f \\ \phi \text { is simple } E}} \int \phi
$$

if and only if f is a measurable function.

2 Answer following seven questions :
(1) Let $E \subseteq \mathbb{R}$ and $m^{*}(E)=0$. Prove that E is a Lebesgue measurable set.
(2) Let $A \subseteq \mathbb{R}$ be any subset. Prove that, A is a G_{δ}-set if and only if A^{c} is an F_{σ}-set.
(3) Define term: Measurable function. Also give an example of a measurable function on \mathbb{R}.
(4) Write down any two from Littlewood's three principles without proof.
(5) Write down Lebesgue integral of a non-negative measurable function on a measurable set $-E$.
(6) Define a characteristic function on a measurable set $-D$.
(7) Define the property Almost Everywhere.

3 Answer following two questions :
(a) Let X be the set of all natural numbers. Let $R=\{A \subseteq X /$ either A is finite or its complement is finite\}. Prove that, R is a Boolean algebra on X.
(b) Let X be a non-empty set and R is an algebra of sets on X. Let $\left\langle A_{i}\right\rangle \subseteq R$. Prove that, there is $\left\langle B_{i}\right\rangle \subseteq R$ such that, $B_{i}{ }^{\prime} s$ are mutually disjoint, $B_{i} \subseteq A_{i}$, for every $i=1,2, \ldots \quad \ldots$ and for any positive integer n, $\bigcup_{i=1}^{n} B_{i}=\bigcup_{i=1}^{n} A_{i}$.

4 Answer following two questions :
(a) Let $\left\langle A_{n}\right\rangle \subseteq P(\mathbb{R})$. In standard notation, prove that $m^{*}\left(\bigcup_{n=1}^{\infty} A_{n}\right) \leq \sum_{n=1}^{\infty} m^{*} A_{n}$.
(b) Construct the Cantor Set and prove that, it is an uncountable, measurable set.

5 Answer following two questions :
(a) Let X be a non-empty set and $C \subseteq P(X)$. Prove that, there is a smallest σ-algebra on X, which contains the given collection C.
(b) Let β_{1} be the σ-algebra on R, generated by the collection of all closed sets on R and β_{2} be the σ-algebra on R, generated by the collection of all open sets on R. Prove that $\beta_{1}=\beta_{2}=B_{0}$, where $B_{0}=$ the Borel field on R.

6 Answer following two questions :
(a) Prove that, the Borel field on R is the subcollection of \mathcal{M}, where \mathcal{M} is the set of all measurable sets.
(b) Let E be a measurable set and f be an extended real valued function on E. Prove that, for any real number α following statements are equivalent:
(1) $\{x \in E / f(x) \geq \alpha\}$ is a measurable set.
(2) $\{x \in E / f(x)<\alpha\}$ is a measurable set.
(3) $\{x \in E / f(x) \leq \alpha\}$ is a measurable set.
(4) $\{x \in E / f(x)>\alpha\}$ is a measurable set.

7 Answer following two questions :
(1) Let $f, g: E \rightarrow R$ be two real valued simple functions on a measurable set E. Let $c \in \mathbb{R}$ be any real. Prove that, $f+g, c f, f-g$ and $f g$ all are simple functions on E.
(2) Let ϕ and ψ be simple functions and they vanish outside of a set E , with $m(E)<\infty$. Let a, b be any real numbers. Prove that,
(i) $\int_{E}(a \phi+b \psi)=a \int_{E} \phi+b \int_{E} \psi$ and
(ii) If $\phi \geq \psi$ a.e. on E, then $\int_{E} \phi \geq \int_{E} \psi$.

8 Answer following two questions :

(a) State and Prove Bounded Convergence Theorem.
(b) State and Prove the Lebesgue Dominate Convergence Theorem.

9 Answer following one question : $1 \times 14=14$
Let f be a bounded function on a measurable set E and measure of E is finite. Prove that,

Inf $\psi \geq f \int_{E} \psi=\sup \phi \leq f \int_{E} \phi$ for all simple functions
ϕ and ψ if and only if f is a measurable function on E.

10 Answer following one question :
$1 \times 14=14$
Constructa non-measurable subset of \mathbb{R} with required justification.

JBE-003-1161002 Seat No. \qquad
M. Sc. (Sem. I) (CBCS) Examination

December - 2019
Mathematics : Paper - CMT-1002
(Real Analysis)

Faculty Code : 003
 Subject Code : 1161002

Time: $2 \frac{1}{2}$ Hours]
[Total Marks : 70

Instructions : (1) All questions are compulsory.
(2) Each question carries 14 marks.

1 Answer any seven questions: $\mathbf{7 \times 2 = 1 4}$
(i) Define Countable set and give an example of a countable set.
(ii) Define Boolean algebra on a non-empty set X.
(iii) Define Borel field and Borel Set.
(iv) Define Outer measure and give an example of an infinite subset of \mathbb{R} whose outer measure is zero.
(v) Give an example of a subset of nowhere dense set.
(vi) Prove or disprove, \mathbb{R} is a measurable set.
(vii) Write down outer measure of following.
sets: $\mathrm{Q},[2,5]$ and $(-3,5)$.
(viii) Is Cantor set measurable? Justify.
(ix) Define almost everywhere property.
(x) Define convergence in sense of measure.

2 Answer any two questions:

$$
2 \times 7=14
$$

(a) Let X be a non-empty set and a be a Boolean algebra on X. Let $<\mathrm{A}_{\mathrm{i}}>\subseteq a$ be any sequence in a. Prove that there is a sequence $<\mathrm{B}_{\mathrm{i}}>$ in a such that each B_{i} 's are mutually disjoint, $\mathrm{Bi} \subseteq \mathrm{Ai}, \forall i \in \mathrm{~N}$ and $\bigcup_{i=1}^{n} B_{1}=\bigcup_{i=1}^{n} A_{i}$, for each $\mathrm{n} \in \mathrm{N}$.
(b) Give an example of a Boolean algebra on N , which is not a σ-algebra on N. Justify your answer.
(c) Let $\mathrm{F}, \mathrm{E} \in \mathrm{m}$, where m is the collection of all measurable sets. Prove that $\mathrm{F} \cup \mathrm{E} \in m$.
(d) Prove that the outer measure is translate invariant (i.e. $\left.m^{*}(\mathrm{~A})=m^{*}(\mathrm{~A}+\mathrm{y}), \forall \mathrm{y} \in \mathbb{R}\right)$.

3 Answer any one question :
(a) Construct a non-measurable subset of [0, 1].
(b) Let f be a bounded function on a measurable set

E and $\mathrm{m} \mathrm{E}<\infty$. Prove that $\inf _{\psi \geq f} \int_{E} \psi{ }_{\phi \leq f}^{\sup } \int_{E} \phi$,
for all simple functions ϕ and ψ on E if and only if f is a measurable function.
(c) State and Prove Vitali's Lemma.

4 Answer any two questions
(a) Let $1 \leq p<\infty$. If $f, g \in L^{p}[0,1]$, the prove that $\mathbf{f}+\mathbf{g} \in \mathrm{L}^{\mathrm{p}}[0,1]$ and $\|f+g\|_{p} \leq\|f\|_{p}+\|g\|_{p}$, where

$$
\|f\|_{p}=\left[\int_{0}^{1}|f|^{p}\right]^{1 / p} .
$$

(b) Let f be a bounded measurable function on [a, b] and $\mathrm{F}(\mathrm{x})=\int_{a}^{x} f(t) d t+F(a), \forall x \in[a, b]$. Prove that $F^{\prime}(X)=f(X)$ almost everywhere on $[a, b]$.
(c) Let $f:[0,1] \rightarrow \mathbb{R}$ and $f(0)=0, f(x)=x^{2} \sin \left(1 / x^{2}\right)$, $\forall \times \mathrm{E}(0,1]$. Prove that f is not a function of bounded variation on [0, 1].

5 Answer any two questions :
$2 \times 7=14$
(a) State and prove Bounded Convergence Theorem.
(b) State and prove Fatou's Lemma.
(c) Let $\left\{f_{n}\right\}$ be a sequence of non-negative measurable functions such that $f_{n} \leq f_{n+1}, \forall n \in \mathbb{N}$. Suppose $\mathrm{f}_{\mathrm{n}}(\mathrm{X}) \rightarrow \mathrm{f}(\mathrm{X}), \forall x \in \mathrm{E}$. Prove that $\int_{E} f=n=\lim _{E} f_{n}$.
(d) Let $\left\{\mathrm{f}_{\mathrm{n}}\right\}$ be a sequence of non-negative measurable functions such that fn $f_{n} \leq f, \forall n \in \mathbb{N}$, where f is also a non-negative measurable function. Suppose $f_{n}(x) \rightarrow f(x), \forall x \in E$. Prove that $\int_{E} f=n \int_{E} f_{n}$.

PCD-003-1161002

M. Sc. (Sem. I) Examination December - 2018
 Mathematics : CMT-1002
 (Real Analysis)

Faculty Code : 003
Subject Code : 1161002
Time : $2 \frac{1}{2}$ Hours]
[Total Maxks: 79
Instructions : (1) All questions are compulsory.
(2) Each questions carries 14 marks,

1 Answer any seven questions: $7 \times 2=14$
(i) Define terms : Sequence and Countable set.
(ii) Define Boolean algebra on a non-empty set X.

- (iii) Give an example of a σ-algebra on a non-empty set.
\checkmark (iv) Define Borel field and Borel Set.
(v) Define Nowhere Dense Set.
(vi) Give an example of a subset of \mathbb{R} which is a no where dense set.
- (vii) Give an example of G_{δ}-set, but is not a F_{σ} - set.
\checkmark (viii) Write down ,outer measure of following sets: $Q,[2,3]$ and $(-3,5)$.
-(ix) Is Cantor set a measurable set? Justify your answet.
(x) Define almost everywhere property.

2 Answer any two questions :

- (a) Let X be a non-empty set and a be a Boolean algotra on X. Let $\left\langle A_{i}\right\rangle \subseteq a$ be any sequence in a. Prove that there is a sequence $\left\langle B_{i}\right\rangle$ in a such that each B_{1} s are mutually disjoint, $B i \subset A i, V i=1,2, \ldots \ldots$ and $\bigcup_{i=1}^{n} B_{i}=\bigcup_{i=1}^{n} A_{i}$, for each $n \in N$.
(5) Che at example of a Boolean algebra on N, which is

(40) Potre that the collection of all measurable sets \mathfrak{m} is a Boolean algebra.
(d) Prove that the outer measure is translate invariant (a.e. $\left.m^{*}(A)=m^{*}(A+y), \forall y \in \mathbb{R}\right)$.

3 Amswer any one question :
(3) Construct a non-measurable subset of $[0,1]$.
(b) State and Prove Holder's Inequality.
(c) State and Prove Vitali's Lemma.
4. Answer any two questions :
(暗) Let $1 \leq p<\alpha$. If $f, g \in L^{p}[0,1]$, the prove that $f+g \in I^{p}[0,1]$ and $\|f+g\|_{p} \leq\|f\|_{p}+\|g\|_{p}, \quad$ where $\|f\|_{p}=\left[\int_{0}^{1}|f|^{p}\right]^{1 / p}$.
(b) Prove that $I^{p}[0,1]$ is a normed linear space over \mathbb{R}.
(c) Let $f:[0,1] \rightarrow \mathbb{R}$ and $f(0)=0, \quad f(x)=x^{2} \sin \left(1 / x^{2}\right)$, $\forall x \in(0,1]$. Prove that f is not a function of bounded yariation on $[0,1]$.
(d) Let f be a real yalued function on $[a, b]$. Prove that f is a function of bounded variation on $[a, b]$ if and only If f can be express as difference of two monotone real valued functions on $[a, b]$.
\checkmark (a) State and prove Bounded Convergence Theorem.
(b) State and prove Fatou's Lemma.
(c) Let $\left\{f_{n}\right\}$ be a sequence of non-negative measurable functions on a measurable set E and $f_{n} \leqslant f_{n+1}, \forall n$. If $f_{n}(x) \rightarrow f(x)$ for some function f on E then prove that $\int_{E} f=\lim _{n} \int_{E} f_{n}$.
(d) Let f, g both are integrable functions on a measurable set E. Prove that of and $f+g$ are also integrable functions on E, for any $c \in \mathbb{R}$.
(New Course)

Faculty Code : 003 Subject Code : 1161002

Time: $2 \frac{1}{2}$ Hours

Potal Mankes 79

Instructions :

(1) Answer all questions.
(2) Each question carries 14 marks.
(3) The figures to the right indicate marks allotted to the question.

1 All are compulsory (Each question carries two mark:)
(a) Define algebra of sets.
(D) Give an example of a set that is σ algebra of sers.
(c) Give an example of a F_{σ} - set.
(d) True or false : Q, the set of rationals, is a $Q_{s}-s \in t$
(e) Define measurable function.
(1) State Littelwood's third principle.
(g) Define function of bounded variation. - 74.3

2 Answer any two
(a) Prove that every closed and open set are meastow
(6) Define Lebergue outer measure of a set and show क.
(12) that Lebesgue outer measure of a finte meryil * its leggth.
(c) Show that countable union of meastuable sets is again measurable.

$$
\text { nx i } q \text {-utgut }
$$

- (i) Prove the if I and a are measurable functions 08 then fis is also mensurable.
(b) Show that f is a function of bounded variation on $[\mathrm{h}, \mathrm{b} \mid$ if and only if there exists monotonically inoronsing functions $g, h ;[a, b] \rightarrow \mathbb{E}$ such that $r \neq g \sim h$.
OR
3 All are compulaory : 14
(i) State and prove Egoroff's theorem. 7
(b) State and prove Fatou's Lemma. 74 Answer any two :14
(a) State and prove Lebesgue dominated convergence theorem.(b) Define lebesgue integral of a bounded measurable7
q^{*}defined on measurable set E then show that$\int_{E} a f+b g=a \int_{E} f+b \int_{E} g$.
(e) State and prove Bounded convergence theorem. 75 All are compulsory (each question carries two marks)14(a) Show that if E is measurable set then its complementis also measurable.
(b) Show that $[a, b]$ is uncountable.
(c) Give the Lebesgue outer measure of a countable subset of $\mathbb{1}$.
(d) Let $\left\langle\mathrm{f}_{n}>\right.$ be a sequence of measurable functions defined on E. If $\mathrm{f} E \rightarrow \mathrm{E} \rightarrow$ then when do we say that $\left\langle\mathrm{f}_{\mathrm{n}}\right\rangle$ converges to f in measure.
(e) Show that every step function is measurable.
(113) (f) Statemonotone convergence theorem.
(g) True false : Fatou's Lemma and Lebesgue dominated convergence theorem holds good if almost every where is replaced by convergence in measure?

MB X-003-1161002 Seat No \qquad
M. Sc. (Sem. I) (CBCS) Examination

December - 2016
Mathematics : MATH.CMT-1002
[Real Analysis]
(New Course)

Faculty Code : 003
Subject Code : 1161002

Time : 2.30 Hours]
[Total Marks : 70

Instructions : (1) Answer all the questions.
(2) Each questions carries 14 marks.

1 Answer any seven : $(7 \times 2=14)$
(3) Let $A \subseteq \mathbf{R}$. When is A said to be of type $G_{8} ? 2$
(b) Let $f:[a, b] \rightarrow \mathbf{R}$ be a step function Prove that f is measurable. P / R
$A \cap E C E \quad$ (e) Let $E \subset \mathbf{R}$ be such that $m^{*}(E)=0$. Such that E is measurable $2 \mathrm{~m}^{2}(\mathrm{C})$ A $\cap \tilde{E} \subset A$ ME $C A)^{*}$
M
(d) Let $f[0,1] \rightarrow \mathbb{R}$ be bounded and measurable. Define Lebesgue \mid integral of f over $[0,1]$ State Monotone convergence theorem
(9) Let $R=(A \subset N$ either A is finite or $N \backslash A$ is finite). Show that R is not closed under countable union.
de）Find $m(10,5) \cup[2,7)$（ $101[0,5] \cup[2,7]=[2,5]$
（h）Le $f: R \rightarrow R$ be a simple function which vanishes＇outside a set of finite measure Define Lebesgue integral of f over 霖．
（i）Let $f[0,2] \rightarrow \mathbb{R}$ be the characteristic function of $\mathrm{Q} \cap[0,2]$ ． Show that $f(x)=0$ for almost all $x \in[0,2]$ ．

Q．When is $f:[a, b] \rightarrow \mathbf{R}$ said to be of bounded variation on $[a, b]$ ？

2 Answer any two：$(2 \times 7=14)$

14
促
（a）Let X be a nonempty set．Let C be a subcollection of the collection of all subsets of X ．Prove that there exists a smallest σ－algebra of sets R on X such that $C \subseteq R$ ．

10．If E_{1} and E_{2} are measurable，then show that $E_{1} \cup E_{2}$ is measurable．
（c）Let $A \subseteq \mathbf{R}$ ．Prove that $m^{*} A=m^{*}(A+y)$ for any $y \in \mathbf{R}$ ．
（3）（13）If f and 8 are real－vahed measurable functions defined on 2,6
68 then show that fg is measurable．
Sf $D \in \mathrm{R}$ be measurable Let $f: D \rightarrow$ R．If $\{a \in D, f(d)<\mathrm{c}\}$
 $(d \in D ; f(d)<a)$ is measurable for any $a \in R$ ．
（c）Let $f[0,1] \rightarrow \mathrm{R}$ be defined by $f(x)=1$ if x is rational and 4 $f(x)=0$ if x is not rations l Show that f is not Riemann integrable over［0，1］

3
(a) Let $E \in \mathbb{R}$ be measurable with $m b \times \infty$. Let $f B \rightarrow \mathbb{R}$ be bounded and measurable. Prove that $\int_{1} c f=e \int_{0}^{f t} f$ for any $c \in \mathbb{R}$ with $c>0$
(b) Mention with details an example of a sequence $\left\langle\ell_{n}\right\rangle$ of 5 measurable functions defined on $[0,1]$ such that f_{n} converges in measure to the zero function on $[0,1]$.
(c) Let $E \subseteq \mathbb{R}$ be measurable. Let $f: E \rightarrow \mathbb{R}$ be measurable. If f is integrable over E , then show that $-f$ and $|f|$ are integrable over E .

4 Answer any two : $(2 \times 7=14)$
(a) Let $E \subseteq \mathbb{R}$ be measurable with $m E<\infty$. Let $\left\langle f_{n}\right\rangle$ be a sequence of measurable functions defined on E and let $f: E \rightarrow \mathbb{R}$ be measurable such that f_{n} converges to f pointwise on E. Then given $\epsilon \geq 0$ and $\delta>0$, prove that there is a measurable set $A \subseteq \dot{E}$ with $m A<\delta$ and $N \in N$ such that $\left|f_{n}(x)-f(x)\right|<\epsilon$ for every $n \geq N$ and for all $x \in N \backslash A$.
(b) Prove Monotone convergence theorem \mathcal{F}
(c) Let $f:|a, b| \rightarrow$ b be such that f is integrable on $[a, b]$. Prove O that the function $F(a, b] \rightarrow \mathrm{R}$ defined by $F(x)=\int_{a}^{x} f(t) d t$ is of bounded variation on $[a, b]$.

(a) Int a, b on with $a<h$ Show that $m *(a, b)=b-a$
(o) Let $A C A$ and $I_{1} \quad E_{n}$ be a finite sequence of disjoint measurable sets. Prove that

$$
m \cdot\left(A \cap\left(\mathrm{U}_{t=1}^{n} E_{i}\right)\right)=\sum_{i=1}^{n} m *\left(A \cap E_{i}\right)
$$

sc) Let $f:[a, b] \rightarrow \mathbb{R}$ be of bounded variation on $[a, b]$. Prove that there exists $g, h:[a, b] \rightarrow \mathbb{R}$ such that g and h are monotonically increasing and $f(x)=g(x)-h(x)$ for all $x \in[a, b]$.
(d) Let $E \subset \mathbb{R}$ be measurable with $m E<\infty$. Let $f: E \rightarrow \mathbb{R}$ be bounded and measurable. Let C be the collection of all simple functions ψ defined on E such that $\psi \geq f$ on E and D be the collection of all simple functions defined on E such that $\phi \leq f$ on E. Show that in $f\left\{\int_{E} \psi: v \in C\right\}=\sup \left\{\int_{E} \phi: \phi \in D\right\}$.

BBM-003010102 5* W io
M. Sc (Mathematics) (sem, I) (CBCS) Wramintion December - 2015
Mathematics : CMT $=1002$ (Real Analysis)
Faculty Code : 003
Subject Code : 016102
The : $2 \frac{1}{2}$ Hours
Trowel Maxis 70

Instructions :

(1) Answer all the questions.
(2) Each question carries 14 marks.

1. Answer any Seven
(a) if $m^{*}(A)=0$, then prove that $m^{*}(A \cup B)=m^{*}(B)$.
(b) When is a subset A of R said to be of type F_{q} ? I $E \subseteq \mathbb{R}$ is of type G_{6},
thee show that the complement of E in R is of type F_{σ}.
(c) Define o-algebra of sets on a nonempty set \tilde{X}. Hastate it with a non- L
trivia example.

- Verify that $\chi \mathrm{E}$ is nonmeasurable.
bf) State bounded convergence theorem.
(s) When is a function $f:[0,1] \rightarrow \mathrm{R}$ sad to be essentially bended? Illustrite with an example.
(2) When is a function $f:|a, b| \Rightarrow R$ and to be a function of bounded vacation? If f, g \& $B V \mid a, b$, , then dhow that $f+g$ e $B V[a, b]$.

2 Answer any Two
 Q11 0
 $2 \times 7=14$

 IL

(i) Hr any a $\in 1$, $(x \in D \mid f(t)>a)$ la mramhenth
(is) For any a $\in \mathrm{H},(x \in D \mid f(x)<a)$ | metmitible.
3. (a) Prove that every Bore set is measurable.
(b) Let f be a nonnegative measurable function which is integrable over a set
E. Then prove that the following holds: Given $s>0$, there exists a $\delta>0$ such that for any measurable set $A \subseteq E$ with $m A<\delta$, we have $\int_{A} f<\epsilon .5$ (c) Let $\phi=\sum_{i=1}^{n} a_{i \chi E_{i}}$ w. h $E_{i} \cap E_{j}=\emptyset$ for $i \neq j$. Suppose that each E_{i} is a measurable sot of finite measure. Show that $\int \phi=\sum_{i=1}^{n} a_{i} m\left(E_{i}\right)$.

OR

3. (a) If f is a measurable function and $f=g$ e.e., then prove that g is measurable 257
(b) Let f be integrable over E and $c \in \mathbf{R}$, Prove that $c f$ is integrable over E, and moreover, $\int_{E} c f=c \int_{E} f$.
4. Answer any Two

(b) $L_{e}\left\langle<f_{4}>\right.$ be a sequence of measurable functions defined on E and f be a measurable real-valued function defined on E such that $f_{n} \rightarrow f$ in measure on E. Show that there is a subsequence $\left\langle f_{n_{k}}\right\rangle$ which converges to f almost everywhere on $E .320$
(c) If f is integrable on $[a, b]$ and $f_{x}^{x} f(t) d t=0$ for ant $x \in[a, b]$, then prove that $f(i)=0$ ae on $[a, b]$.

$$
\frac{44}{b-3}
$$

5. Amasser amy Two
(i) E is measurable.
(ii) Given $\theta>0$, there is a closed set $F \subseteq E$ such that m* $(E \backslash F)<e$.
(c) Let E be a mensurable set with $m(E)<\infty$. Let $f: E \rightarrow \mathbf{R}$ be bounded Let $A=\{t: E \rightarrow R \| p$ is simple and $\varphi \geq f\}$ and $\mathrm{B}=\{\mathrm{b}$:
 (d) Let E be as in (e). Let $<f_{n}>$ be a sequence of mensurable functions flD) Car each $x \in E$. Prove that given $f>0$ and $\delta>0$, there is a measurable Pr

$003-016102$ 3164 zit $/ 5104340$

M. Sc. Aluthematos (CBC Si Sem ITEAmferfon December 3014

MALI, CAT $1002+141 . A t, 4+1 / 3 / 5$

Faculty Code 001
Subject Code; 016101

Time: 235 Hours]

foetal Marks: 70

1. Answer any Seven :

(a) Define a measurable set. Let E be a subset of R such that m*(E) $=0$. Show that \qquad any subset of E is measurable.
(b) Define a measurable function, $\begin{aligned} & 34+14 ;\end{aligned}$ Show that any continuous function $\bar{F}: \mathrm{R} \rightarrow \mathrm{R}$ is measurable.
Le) Define a simple function and illustrate it with an example l- I5?
(16) State Monotone convergence theorem, - 257

Define the collection of Bore! Bets. Cana nonmeasuatic set a Burt set ? If rot, Len why?
(f) Let if to measurable function. When do we say that f is integrable over a measurable set E? Verify that the characteristic function of any countable subset-of 聚 istintegrable over R.
(a) Let $f[2,3] \rightarrow$ R. When is I said to be a function of bounded variation over $[2,3]$?
(n) Let $f[0,1] \rightarrow R$. What is the meaning of saying that f is continuous almost everywhere on $[0,1]$?

2. Answer bathos

(a) Let lobe a hume
$\{a, b]$, then prove that (is moststhtite

(e) State Paton's lemma show that use may have stititinequality in Fatow's lemma.

$$
01
$$

(a) Let $f: R \rightarrow R$ be nomegative and integrable trove that the function F defined by \int fiscontinsous $\quad 2 P$
(b) Let f, g be integrable over a measurable $s e t$. if $f \leq g$ almost everywhere or: E, then prove that $\int_{E} f \leq \frac{l_{E}}{}$ g.
(c) Show that there exists a sequence $\left\langle f_{n}>\right.$ of measurable functions which converges to the zero function in measure on $[\overline{0}, 1]$ but $<f_{8}(x)>$ does not. converge for any $=[0,1] \quad 323$
(b) Let $E \subseteq P$ Prove that E is measurable if and only if given $\in>0$, the ce exists an

(c) Prove that a function f is of bounded vallation on ia, b] af andeoniy if f is the Difference of tho monotomeally increasing furictions on $[a, b], \frac{b-3}{30}$
5. Answer any two:
(a) If E is measumble, hus t prove that for any $y \in$ moreover, me on mill 4 a) 96

(7) State and prove fyeteffe theorem 18 1.

Faculty Code : 003
Subject Code: 016102

Tine: 2V Hours

Instructions - : in ill questions are compulsory,
in. Each question carries 14 marks.

Anvers. vern

aa- Dentin: a σ-algebra oi sets on a nonemper set X. Verify that there cis a subset A of N such that both A and A^{c} are not finite.
(b) Define a measurable function. If the characteristic function of a subset E of is is measurable then show that E is a measurable set.
(i) Stare bounded convergence theorem.
(5) Let $A \subseteq R$. Define $m^{*} A$. If for some subset A of $R \cdot m^{*} A=0$. then verify that $m^{*}(A \cup B \cup C)=m^{*}(B \cup C)$ for any subsets B, C of R.
ie) Let f be a nonnegative measurable function defined on a measurable
set E. Define $\int_{\mathrm{E}} \mathrm{f}$.
In Lei f be a real-valued function defined on R. Define f^{t} and $f-$. For any real valued functions f, g defined on R. verify that $(f-g)^{+} \mathrm{If}^{+}+g^{+}$.
(g) Le: $f: \mid a, b] \rightarrow R$ be such that $f(x) \leq f(y)$ for any $x, y \in[a b]$ with $x \leq y$. Prove that $f \in B \vee[a, b]$.
(ib)-Let X be a normed linear space over R. Define a Cauchy sequence in X.
vi) State Holder inequalin:
(j) Let $f:[0.1] \rightarrow\{0.1)$ be the characteristic function of $Q \cap[0,1]$. Determine the upper Riemann integral of f over $[0,1]$.
\because Answer any two
(a) Let a, be R be such that $a<b$. Prove that $m{ }^{*}[a, b]=b-a$ a
(b) Let $A \subseteq R$ and $E_{1} \ldots . . . \mathrm{E}_{\mathrm{n}}$ be a finite sequence of disjoint measumbile sets. Prove that $\mathbb{C l}^{*}\left(A \cap\left(U_{i=1}^{n} E_{i}\right)\right) \sum_{i=1}^{n} \eta^{*}\left(A \cap E_{i}\right)$
(e) Le C be an extended real-valued function defined on a measurable set D. Prove that the following statements are equivalent
(i) $\{x \in D: f(x)>a \mid$ is measurable for any $a \in K$.
(iii) $\{x \in D: f(x) \cdots a\}$ is measurabic for any $\alpha \in R$,

- Th and g are bounded measirnhle functions defined on a measurable set E of finite measure then prove that $\int_{\mathrm{E}} \mathrm{f}+\mathrm{g}=\int_{\mathrm{E}} \mathrm{f}+\int_{\mathrm{E}} \mathrm{g}$.
(b) Let f be a mensurable function which is integrable over a measurable set E. Prove that for any real number. of is integrable over E.
(c) Let $A \subseteq R$. When is A called an F_{σ} ? Prove that any open set in P is an F_{σ}.

OR

(a) Let $E \subseteq R$ be measurable. Prove that given $\epsilon>0$, there is an open se: O in R such that $O \supseteq E$ and m (OLE) $<\epsilon$.

(b) Prove Fitou's lemma.

(c) Left, E be functions defined on a measurable set D. If f is measurable and $f=g$ ace on D, then prove that g is measurable.
4. Answer any three. Part (d) is compulsory.
(a) Let X be a nonempty set and C be nonempty collection of susses of X. Prove that there is a smallest algebra R of subset of X which contains C.
(b) Lei f be a manegative integrable function. Shove that the furious defined by $f(x)=\int_{-\infty} f$ is continuous.
as A^{\prime} : is a function of bounder variation on (a, b), hen prove that $T_{2}^{\prime} \hat{f}=p_{2}^{b} f+N_{2}^{b} f$.

5. Answer any twa:
tat Let $\sim E_{n}>$ be an infinite decreasing sequence of measurable sets and let $m E_{1}$ be finite. Prove that $m\left(n_{i=1}^{m} E_{j}\right)=\lim _{n \rightarrow \infty} m E_{n}$.
(6) If every absolutely summable series in a normed linear space X is sump at he, then prove that X is complete.
Prove Hutider inequality.
(d) Prove that the collection of measurable sets is a σ-algebra.

- 5c.20゙301510.)

SC. 003016102
SeatNo. \qquad
M.Sc. Mathematics (CBCS) Semester-01

October / November - 2012
Civt-1002: Real Aanlysic
Time: 2 ' $:$ Hours
Instructions:
(i) All question are compulsory.
(ii) Each question carries it marks.

Q:1 Answer Any Seven
a) Define a σ ealgébra of sets on a nonempty set X.
-b) Define (i) a F_{n}-set (ii) the collection of Borel sets.
\& c) Define Lebesgue oumer mensure. m° (0.1) u(1.3))
d) Let $E \subseteq R$. Verify that for nay subset A of $R . m^{*} A \subseteq m^{*}(A \cap E+$ $m^{*}(A \cap E c)$
e) Let $f . g$ be real-valued functions defined on R. When de we szy tha f $=g$ almost everwhere?
fi) Give an example of a setp runction defined on (0.2). Define the concept of a simple innction.
c) State Fatou's lemma.
h) If is integrable over E. then show that H is integrable over E.
i) Let $f: \mathrm{R} \rightarrow \mathrm{R}$ be given by $f(0) 0$ and $f(x)=\sin (1 / 2)$ if $\mathrm{x} * \mathbb{Q}$.ing D^{+}f(0)
j) Define a normed linear space over the field of real tumbers

Q:2 Answer Aly Two

a. Lee $X=R$. Let R be the collection of subsets A of X such that either
A is countable or $A^{\prime \prime}$ is countable. Show that R is a σ-algebra of sets.
b. Lee A be any subset of R. Prove the following statentents:
(i) Given an! $\epsilon>0$. there exists in npen se! $O .5 K$ such that $\beta . \subseteq$ O and $\operatorname{m} \boldsymbol{O} \leq m^{*} A+\epsilon$.
(ii) There is a subset Cof R which is of tyme Gir such that $A \subseteq$ G and $m^{*} A=m^{*} G$.
c. Prove the following:-
(i) If $\mathrm{m}^{*} \mathrm{E}=0$. then E is measurable.
(ii) If E_{1} and $E_{:}$are measurable then so is $E_{1} \sim E_{\text {: }}$

Q 3 W. Prove that every Borel set is measurable.
Let E be measurable, Let $<j_{n}>$ be a sequance of measurable 05 functions define on E. Prove that the functions sup $\left(\Gamma_{;} \ldots, f_{n}\right)$ inf $\left(f_{1}\right.$, . $\left.\ldots . f_{n}\right\}, \sup \left(U_{n}\left|\operatorname{ninf}\left\{f_{1}, \ldots . f_{n}\right\}, \in \mathbb{N}\right|\right.$ are all measurable
c. Let $f:[2,3] \rightarrow R$ be given by $f\left(\rho^{(}\right)-1$ if x is rational and $f(x)-0$ if x 04 is irrational. Prove that f is not Riemann integrable on !2.3]. OR ${ }^{\circ}$
Q:3 2. If f and g are bonded measurable functions detines; on a set E of 14 finite measure, then prove that $\int_{\varepsilon} f+g=\int_{\varepsilon} f+\int_{r} g$.
b. Let $\left\langle\int_{n}\right\rangle$ be an increasing sequence of nonnegat:e measurable functions and let $f=\lim f_{11}$. prove that $\int f=\lim f_{11}$.
c. Let f of integrable over E. Let $\alpha \in$ R. Prove that $\because f$ is integrable over E.
Q:4 Answer Any Two:
a. Let g be intebrable over E and let $<f_{n}>$ be a sequence of measurable functions such that $V_{n} \mid \leq g$ on E and $f(x)=\lim f_{n}($.$) for dimost all x \in$ E. Prove that $\int_{6} f=\lim \iint_{0} f_{n}$
b. Prove that a function f is of bounded variation on [a. b] if and only if f is the difference of two increasing real-valued functions on [ab].

HF
c. Let $f:[0,1] \rightarrow R$ be an essentially bounded measurable function: Prove than $|/| \leqslant\|/\|^{\prime} .$. inmost everywhere on $[0,1]$. If $\rho . g:[0.1]$, R are essentially bounded mensurable, functions, then show that $\| f$ $+s\|-s\| /\|m+\| s \| \ldots$

Q: * Answer Any Two

- State and prove Minkorvski inequality.

b Prove the following statements
ii) m^{*} is translation invariant.
(ii) If E_{1} and E_{2} are measurable, then $\mathrm{m}\left(E_{1} \cup E_{2}\right)+\mathrm{m}\left(E_{1} \cap E_{2}\right)$

$$
=m E_{1}+m E_{2}
$$

\therefore Let and \varnothing and ψ be simple functions which vanish outside a set of finite measure. Prove that for any real numbers a and $b, \int(a \emptyset+b \psi)$ $=a \int \emptyset+b \int \psi$.
d. If f is integrable on $[\mathrm{a}, \mathrm{b}]$ and $\int_{n}^{+} f=\mathrm{G}$ for all $x:[\mathrm{a}, \mathrm{b}]$, then prove that $f(1)=0$ ac. on $[a, b]$.

$$
\begin{aligned}
& \text { (1) } p^{p} \cdot \operatorname{space} \\
& (\geqslant) \text { vecton space } \\
& (\Rightarrow 2 \text { nोs }
\end{aligned}
$$

(4) oosentialily poend.e.
(3) noicton enoaudi
(ST) mentacuali in (A) (cuviesencz b compit (8) convengent searuen (a) (cesecty

Tay Matere (10) cormlite, Buinch spore
(12) Senii"
(13) Dummable

I(c) Abselcetely inemones'e
4evie (1) Filali thon.
(2) $\left.\left(D^{+} f\right)(x)\left(D^{-}\right)^{x}\right)$
(3) Fen of sdd vaiasti
(c) lipschitz conclation

MATH.CMT' - 1002 : Real: Analysis :
thime
Hours]
[Total Marks : 70

Instruchons: (1) Answer all the questions.
(2) Each question carries 14 marks.

1. Answer any Seven
2. Answer any Seven $\quad \begin{array}{r}7 \times 2=14 \\ \text { To Neffine the collection of Borel sets. Let } F \subseteq R \text { be closed. Verify that } E\end{array}$
fiy For aty subect A of P, define $m^{*}(A)$. Show that $\pi^{*}(\{r\})=0$ for any, $G \in$. $\because=\mathrm{F}$.
THefue a mesurable furtion. If $P \subset[0,1)$ is a nomrneasurable set, then werin the the chataterist function of P is not a measurable-function.
3. State bonidec cönvergence theorem.
(a) Let $E \subseteq \mathrm{~F}$ ard let f be an extended real valued function defined on E.

Define f^{+}. f^{-}and show that $f(x)=f^{+}(x)-f^{-}(x)$ for each $x \in E$.
(i) Lery $f_{n}=$ ite a aquane of real-valued measiable functions defined on

I Tel foe a real-valued measurable function defined on E. When do we
my that $<f_{n}>$ converges io f in measure?
 wer $\{0,1\}$.
If Let (\therefore, il li) be a bormat tinear space. Let $d: X \times X \rightarrow \mathrm{R}$ be given by $d(x, y)=\|x-y\|$. Show thet d is a metric.
 that $\mathrm{Q}+\mathrm{E}$ is weasurable.
(1) Detghe at atgebra of mets on a set X. Let R be an algebra of sets on

4. Anowne nurtwo

$$
2 \times 7=14
$$

4 Answer any three, amon first two lave marks five,
five each and third has pout marks.
(1) Let sem and $f \rightarrow 1$ be a map. Then prove that followings ave equivalent.
(Q) $\{x \in S \mid f(x) s \varphi \in m, v x \in \mathbb{A}$
(a) $\{x \in s \mid f(x) s(x\} \in m, \forall x \in \mathbb{P}$
(iii) $\{x \in S \mid f(x) \nmid \alpha\} \in m, \forall x \in \mathbb{A}$
(iv) $\{x \in E \mid f(x) \in a\} \in m, \forall x \in \mathbb{R}$

Fatous lemma state and prove.
(3) Define following terms
(a) Convergence sequence in anis
(ii) Cauchy sequence in a nos
(iii) Complete normed linear space
(vi) Summable sentence
(v) Absolute summable sequence.
(4) A nils (X, H) is complete ff every absolute summative sequence $\left\langle x_{n}\right\rangle$ d X is also a summable sequence in X, prove it.

5 Lussyefs bang two:
State and prove Witali's lemma.
(0) Hate and pope Holder's inequality.
(5) Dat $x=(0,1)$ and the relation "." on X defined by. $x-y$ 都 4 y Q, for any $x, y \in X$, which makes X into ©quivatmee theses $E_{\lambda}, x \in A$ with $E_{\lambda_{0}}=[0,1) \cap Q$, for some 2. \#o. If who otoosf f which contains exactly one element frown swath E_{A} fad $A_{1}=P+h_{i}$, for each $r_{i} \in E_{\lambda_{4}}$, then prove that $t f=\pi$ and mind Pis ate non-measurable sets.
(4) Let $/$ be 4 bout (eft function on a measurable seth will $m f$ fo. Them move that the necessary and

(6) The relation "o" on $x=[0, i)$ defined by for any x, y, x, $x \sim y$ if $x=y \in Q$ is \qquad
(A) not rencxive
(ii) 195 symm : : : :
(C) bot bonsitive
(C) ~it equ. :
(7) Range of a simple funcion is \qquad .
(A) a finite
(B) an infixit:
(C) a countable
(D) an uncoust. ile
 \longrightarrow map.
(A) a Reimann integrable
(B) a Lesbegue integrable
(C) Reimann and Lebegue integrable
(D) a continuous
$\because(0)$ If $f(x)=|x|$, then the value of $D_{+} f(0)$ is \qquad .
(A) -1
(E) 0
(C) 1
(D) ∞
 \qquad - $\frac{\pi}{3}+\sqrt{6}$
(A) $2 f^{+}$
(C) 0
U 25
(1) $\%$

2 Answer any two:

(2) (1) Find a e-algobra genemated iy the ccion it
$\because \&$
$[6,\{\alpha, b],\{c, d]\}$ on X, where $Z=\{c, b, c, b\}$.
(2) (2) ghtw that energy Eorel set is a measurait set
(2)

State and prove Bounded couvergence theoram. a 8 -algebra.
(3) (2) Ftate an prove generalized Fatou's Lemmat. Ol
 (2) smallest α, algebra on X which conteren sia giver

4 Answer any three, among fest two have maces. . .
five each and third has tour mates
(1) Let $B \in m$ and $f: B+1$ be a followings are equivalent
(i) $\{r \in E \mid f(x) s(a) \in m, \forall x \in G$

(2)
(ii) $\{x \in S \mid f(x) \in a\} \in m, \forall x \in \mathbb{A}$
(iii) $\{x \in E \mid f(x) \& a\} \in m, V x \in \mid$?
(iv) $\{x \in E \mid f(x) s \alpha\} \in m, \forall x \in \mathbb{F}$
(3$)^{(2)}$ Fatous' lemma state and prove.
(3) Define following terms :
(i) Convergence sequence in ainls
(ii) Cauchy sequence in a nos
(iii) Complete normed linear space
(iv) Summable sequence
(v) Absolute summable sequence.
(4) A ils $(X,\| \|)$ is complete af every absolute summed .e sequence $\left\langle x_{n}\right\rangle$ in X is also a summable secmance in X, prove it.

5 Answaz any two :

(1) State and prove Vitali's lemma. (5)
(2) State and prove Holder's inequality. (4).

(3) Let $X=[0,1$) and the relation " \sim " on X deemed by 7 $x-y$ if $x^{*}, y \in Q$, for any $x, y \in X$, which makes x into equivalence cases $E_{\lambda}, x \in A$ with $E_{\lambda_{0}}=(0, i) \cap$, for some λ_{φ} EA. If we choose P which contains enathy ne elvacse from tach E_{A} and $B_{F}=P+r_{i}$, for each $r_{i} \in E_{\lambda_{0}}$, then prove that $U A=A$ and each P_{i} 's are nonmeasurable sets.
(9) Let f be a bounded function on a measurable
 sot will mi s \& Then prove that the necessary and suffelent condition for $\inf _{f=f} \int_{5} \psi=\sup \int_{5} \phi$ where ϕ and y fie simple function is f bo a mes suable function 7 on 16.

Saurashtra University Department of Mathematics
 Semester-1 Real Analysis Test No. 2 12.10.11
 Answer any 10 questions. Each question $=$ arries 2 marks.

\rightarrow Let $\phi: \mathrm{R} \rightarrow \mathrm{R}$ be a simple function such that $m\{x \in \mathrm{R}: \phi(x) \neq 0\}<\infty$. Define $\int_{\mathrm{R}} \phi$.
≥ 1.2. Let E be measurable. When is a function from E into R said to be 'hounded? If $\left.m_{1}^{\prime} E\right)<\infty$ and $f: E \rightarrow \mathrm{R}$ is bounded and measurable, then
 define $J_{E} f:=\square \prod_{t} \psi \cdot d x$ cohere $\psi: f \rightarrow R$ is simple.
t 3. State bounded convergence theorem -23
4. State Fatou's lemma. Illustrate with the help of ap example that we may

6. Let f be a fonnegetive measurable function defined on R. Let \mathcal{M} denote the collection of all Lebesgue, treasurable sets.

Let $\mu: \mathcal{M} \rightarrow\{r \in R \leq r \geq 0\} \cup(\infty\}$ defined by $\mu(E)=\int_{E} f$. Verify that μ. is a measure. 77 . Let f be: as in 6.: If f is integrable over R, then prove that the function F given by $F(x)=\int_{(-\infty, x)} f$ is continuous. \because
$\rightarrow 8$. Let f be a measurable function. When is f_{y} said to be integrable over a measurable set, E ? verify that f is integrable over E if and only if $|f|$ is a? σ^{-1} integrable over E.
别. State Lebesgue convergence tincorem. - $2-3$
10. Let $\left\langle f_{n}\right\rangle$ be a sequence of real-valued functions defined on a measurable set E and let f be a-real-valued measurable function defined on E. If $<f_{n}>$ converges to f in measure on E, then verify that any subsequence of $<f_{n} \geqslant$

-11. Let $<f_{n}$ be sequence of measurable functions defined o in a measurable set E Let f Geaneatended real-valued function defined on E, When

133. Verify that $\left.\chi_{\text {ann }}^{0} 0,1\right]$ is not Riemann integrable over $[0 ; 1)$.
14. Illustrate that the Monotone convergence theorem need not hold for decreasing sequence of functions. 2.69

* 15 Let f be a non-nedative measurable function defined on E. If $\int_{\bar{E}} f=0_{2}^{2}$ then verify that $f=0$ ae on $E .261$ Best of luck

1．3．（a）Let f and s be mendable real wed functions defined on E ．Let $c \in R$ ．Prove that the funtlang $f+6$ ，f ，and $f+y$ tee measurable 5 ， 5 of Let B be a marsuraha set of home mensme：let＜$f_{t r}>$ be a sequence functivuable functions defined 00 D ：le f f be a measurable real－vahied $\delta>0$ ，prove that there on measmable set $A \in D$ with $m(A)<\delta$ and an integer N such that for all x 宏质 and all $n \geq N_{i}|f(x)-f(x)|<\epsilon$ ．
（c）Let f, g be bounded measurable functions defined on a set E of finite measure If $f \leq g$ atonal everywhere on n ，thegn prove that $f_{c} f \leq f_{E} g g^{4}$

Or

State and prove Batu＇s lemma．

（b）Le f f be a nonuegainive measurable function which is integrable over E．
Let $\gg 0$ be given．Prove that there is a $\delta>0$ such that for any measursule

$\overline{6}$
（c）Let f abd g be integrable over E ．Show that $f+g$ is integrable over $E \cdot 4$
4．Aasmar any Three．Part id）is compulsory．
（a）Let $\left\langle f_{n}\right\rangle$ be a sequence of measurable foal－valued functions defined on E ．Let f be a measurable real－valued function defined on E such tint $/$ ，
$\left.<f_{n_{s}}\right\rangle$ which converges to f almost everywhere ap $E \quad 320$
（b）Let $f=[a, b] \rightarrow$ R be of bounded variation over $[a, b]$ ．Prove that $T_{a}^{b}(f)=$ $P_{a}^{b}(f)+N_{a}^{i}(\rho)$ and moreover，prove that $j(b)-f(a)=P_{a}^{s}(f)-N_{a}^{b}(f)$ ．

（c）If f is integrable on la，y and if $\int_{[a, y)} f(t) d t=0$ for all $x \in[a, b]$ ，then
prove that $f=0$ att．on $\{9,4$ $4 \subset C b-3$
$5 \cdots$
4f（d）Let $f: R \rightarrow$ R DD defined by $f(x)-x \sin (1 / x)$ if x and $f(0)=0$ ．
Find $\left.\left(D^{+} f\right)(0),\left(D_{4} f\right)(0),\left(D^{-}\right)\right)(0)$ ，and $(D \ldots f)(0)!$

Anspret any fro

5）State and prove Holders bequnly GI
$2 \times 7=14$ 左
6

\rightarrow Show that $m^{*}\left(A \cap\left(U_{2} B_{i}\right)=1, m^{\prime}(A \cap R) \quad T Q\right.$
State aud prove Lebester convergence theorem a 93
ane－et f be integrable fowtim on (a, y) If $H, 4 \Rightarrow \mathrm{~A}$ is given by $F(x)=$
Led $(t) d$ ，then prove hat $1 \%(a)=1(q)$ for almost all \approx Ea，b］ $47(b-3)$

（1）proof）an algebra of sets on a nonempty set X ．Describe（ with ac \qquad
Samnashera Diversity
Department of Mathervatica
MiSe．Semester 1，Test No．1，CMT－1002，放eat Amatyshis Answer any 10 questions， 9.9 .16

解
proof）the smallest algebra of sets on X cootainitg $\mathbb{C}=11 \mathrm{~F} \| \mathrm{F} \in \mathbb{X}$ ．
2 show that $A D A \in T$ of sets on a nonempty se：X ．For any A $B \in R$ ，
23．Define the concept of o－clgebru of sets on a mowernpty sen X ．Let
15 be a o－algebra of sets on a set X ．If $A_{n} \in S$ for each $n \in M$ ，then
prove that $n_{n=1}^{\infty} A_{n} \in S$
－ 4 Let A be a nonempty set and C be a subcollecticen of the collection
＿－Of all subsets of A．Define the notion of σ－debra of sets generated by
C．Dene the concept of Burri sets
$2=5$ ．Let $F \subseteq \mathbb{R}$ ．When is F said to be of type F_{0} ？
6．Mention af example（with brief details and no proc）of $\mathrm{F} C$ \＆such
that F is of type F_{0} ，but F is no：of type F_{0} ．
$x \rightarrow$ ．Let $G \subseteq \mathbb{R}$ be of type G_{A} ．Show that R^{2} iv of type F_{g}（
S．Verify that m° is monotone L

F8Z-003-1161003

M. Sc. (Sem. I) (CBCS)

Examination

December - 2022
Mathematics : 1003
(Topology - 1)
Faculty Code : 003
Subject Code : 1161003
Time : 2 $\frac{\mathbf{1}}{\mathbf{2}}$ Hours / Total Marks : 70

Instructions : (1) There are five questions.
(2) Answer all the questions.
(3) Each question carries 14 marks.

1 Answer any seven of the following :
$7 \times 2=14$
(1) Define (i) Discrete topology (ii) Indiscrete topology.
(2) Give an example of a set X and a sub collection of $\mathrm{P}(\mathrm{X})$, which is not topology.
(3) Define first and second projection map on $\mathrm{X} \times \mathrm{Y}$.
(4) Define interior and closure of a topological space.
(5) Define with example : Homeomorphism.
(6) Define with example : Separation of a topological space.
(7) Define with example : Locally connected space.
(8) Define : Linear Continuum.
(9) When a sequence is said to be converges uniformly?
(10) Define with example : Strictly finer topology.

2 Answer any two from the following questions.
(a) Let $' B=\{(a, b) \mid a<b, a, b \in \mathbb{R}\}$ prove that, $' B$ is a basis for some topology on \mathbb{R}.
(b) Let Y be a subspace of X . Prove that, $\mathrm{F} \subset \mathrm{Y}$ is a closed subset of Y if and only if $F=K \cap Y$ for some closed subset K of X .
(c) Let A be a subset of a topological space X . Prove that, $x \in \bar{A}$ if and only if every open set U containing x intersect A.

3 Answer the following both questions.
(a) Consider \mathbb{R} with standard topology, Let $\mathrm{A}=(0,1)$. Find A^{\prime}.
(b) If $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is continuous and $\mathrm{g}: \mathrm{Y} \rightarrow \mathrm{Z}$ is continuous then prove that, $g^{\circ} f: X-Z$ is also a continuous map. OR

3 Answer the following both questions. $2 \times 7=14$
(a) Let (X, d) is a metric space. Prove that, ' $B=\left\{B_{d}(x, \in) / x \in X, \in>0\right\}$ is a basis for the metric space (X, d).
(b) State and prove, sequence lemma.

4 Answer the following both questions.
(a) Prove that, a space X is locally connected if and only if for every open set U of X, each component of U is open in X.
(b) State and prove, intermediate value theorem.

5 Answer any two from the following questions.
(a) Prove that, lower limit topology on \mathbb{R} is strictly finer than the standard topology on \mathbb{R}.
(b) Let X be an infinite set.

Let $\tau=\{G \subset X \mid G=\phi$ or $X-G$ is a finite set $\}$ prove that, τ is a topology on X .
(c) Prove that, if a space X is locally path connected and connected then it is path connected.
(d) State and prove, pasting lemma.

DESU-UU0-1ivevue

M. Sc. (Sem. 1) Examination

February - 2022
Mathematics : CMT-1003
(Topology - I)
Faculty Code : 003
Subject Code : 1161003

Time : $2 \frac{1}{2}$ Hours]

Instructions : (1) Attempt any five questions from the following.
(2) There are total ten questions.
(3) Each question carries equal (14) marks.

1 Answer the following :
(1) Define with example : Co-finite Topology on a Set.
(2) Define with example : Homeomorphism.
(3) Define with example : Lower limit Topology on \mathbb{R}.
(4) Define with example : Convex set.
(5) Is boundedness a topological property ? Justify your answer.
(6) Define with example : Product Topology
(7) Define with example : Convergence of a sequence.

2 Answer the followings :
(1) Define with example : Path between two elements in topological space.
(2) Define with example : Square Metric.
(3) Define with example : Limit point of a set.
(4) Let X and Y be topological space. Consider the function $\pi_{1}: X \rightarrow Y$ defined by $\pi_{1}(x, y)=x$, for all $(x, y) \in X \times Y$. Is π_{1} is continuous ? Justify your answer.
(5) Define with example : Connected Topological space.
(6) Let X be a discrete topological space and Y be a metric space. Let $f: X \rightarrow Y$ be any function. Is f continuous ? Justify your answer.
(7) Define with example : Metric space.

3 Answer the following :
(a) On the set of real numbers \mathbb{R}, Define $\tau_{c}\{U \subseteq \mathbb{R} / \mathbb{R}-U$ is either countable or all of \mathbb{R} ? Prove that, τ_{c} is topology on \mathbb{R}.
(b) Let X be any set of B be a basis of X. Define
$\tau=\{U \subseteq X$: if $x \in U$ then there exists $B \in B$ such that $x \in B \subseteq U\}$. Prove that, τ is a topology on X.

4 Answer the followings :
(a) Let $(X,<)$ be a simply ordered set and

$$
B=\{(a, b) / a, b \in X\} \cup\left\{\left[a_{0}, b\right] / a_{0}, b \in X\right\} \cup\left\{\left(a, b_{0}\right] / a, b_{0} \in X\right\}
$$

where a_{0}, b_{0} are the smallest and largest elements in X. Prove that B is basis for X.
(b) Let B be a basis for the topology of X and \mathcal{e} be a basis for the topology of Y. Prove that the collection $D=\{B \times C / B \in B$ and $C \in \mathcal{C}\}$ is a basis for the product topology of $X \times Y$.

5 Answer the following :
(a) State and prove, Pasting lemma.
(b) Prove that, the topologies of \mathbb{R}_{l} and \mathbb{R}_{k} are strictly finer than the standard topology of \mathbb{R}, but are not comparable with each other.

I Contd...

6 Answer the followings :

(a) Let X and Y be two topological spaces. Let $f: X \rightarrow Y$ be a function. If f is continuous then prove that, for every subset A of $X, f(\bar{A}) \subseteq \overline{F(A)}$.
(b) Let X, Y and Z be a topological spaces. Let A be a subset of X. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be continuous functions. Prove that
(i) The inclusion function $j: A \rightarrow X$ is continuous
(ii) The composite function $g \circ f: X \rightarrow Z$ is continuous.

7 Answer the following :
(a) Let X and Y be topological spaces and π_{1}, π_{2} be the projection maps. Prove that
$\mathcal{S}=\left\{\pi_{1}^{-1}(U) / U\right.$ is open in $\left.X\right\} \cup\left\{\pi_{2}^{-1}(V) / V\right.$ is open in $\left.Y\right\}$ is a sub basis for the product topology on $X \times Y$.
(b) Let X be a topological space and Y be a subspace of X. Prove that, a set A is closed in Y if and only if it equals the intersection of a closed set in X with Y.

8 Answer the following :
(a) Let A be subset of a topological space X; Let A^{\prime} denote the set of all limit points of A. Prove that $\bar{A}=A \cup A^{\prime}$.
(b) Let (X, d) be metric space.

Prove that, $B_{d}=\left\{B_{d}(x, r) / x \in X, r>0\right\}$ is a basis for the metric space (X, d).

9 Answer the followings ;
(a) State and prove, Uniform limit theorem.
(b) Let d and d^{\prime} be two metrics on the set X. Let τ and τ^{\prime} be the topologies induced by d and d^{\prime} respectively. Prove that, τ^{\prime} is finer than τ if and only if for each x in X and each $\varepsilon>0$, there exists a $\delta>0$ such that $B_{d},(x, \delta) \subset B_{d}(x, \varepsilon)$.

10 Answer the following :
(a) Let X be a topological space with a basis B for topology on X. Prove that, $x_{n} \rightarrow x$ if and only if for every basis element B containing x, there exists $n_{0} \in \mathbb{N}$ such that $x_{n} \in B, \quad \forall n \geq n_{0}$.
(b) Let X and Y be two metrizable spaces with metrics d_{x} and d_{y}, respectively. Let $f: X \rightarrow Y$ be a function. Prove that, f is continuous if and only if for given $x_{0} \in X$ and $\in>0$, there exists $\delta>0$ such that $d_{x}\left(x, x_{0}\right)<\delta \Rightarrow d_{y}\left(f(x), f\left(x_{0}\right)\right)<\in$.

MBP-003-1161003 Seat No.

M. Sc. (Sem. I) Examination
February - 2021
Mathematics : CMT-1003
(Topology-I)

Faculty Code : 003
Subject Code : 1161003

Time: $2 \frac{1}{2}$ Hours]
[Total Marks : 70
Instructions :
(1) Attempt any five questions from the following.
(2) There are total ten questions.
(3) Each question carries equal marks.

1 Answer the following : 14
(1) Define with example : Topological space.
(2) Let X be any set and $\left\{\tau_{\beta}\right\}$ be a collection of topologies
on X. If $\tau=\bigcap_{\beta} \tau_{\beta}$ then prove that τ is a topology on X.
(3) Define with example : Basis of a set.
(4) Define with example :
(i) Finer topology
(ii) Coarser topology
(5) Define with example : Simple order relation.
(6) Let X and Y be topological spaces. Consider the function $\pi_{1}: X \rightarrow Y$ defined by :

$$
\pi_{1}(x, y)=x, \text { for all }(x, y) \in X \times Y .
$$

Is π_{1} continuous ? Justify your answer.
(7) Define with example : Homeomorphism between two topological spaces.

2 Answer the following :
(1) Is boundedness a topological property? Justify your answer.
(2) Define with example :
(i) Sub basis
(ii) Subspace Topology
(3) Define with example : Convex subset of an ordered set.
(4) Define with example :
(i) Closure of a set
(ii) Limit point of a set
(5) Prove that the sequence $\left(\frac{1}{n}\right)_{n=1}^{\infty}$ converges to any $x \in \mathbb{R}$ in co-finite topology.
(6) Define with example : Metric topology.
(7) Define with example : Linear continuum.

3 Answer the following :
(a) Let X be any set and $I B$ be a basis of X. Define
$\tau=\{U \subset X \mid$ if $x \in U$ then there exists $B \in I B$ such that $x \in B \subset U\}$ prove that τ is a topology on X.
(b) Let $I B_{1}$ and $I B_{2}$ are basis of the topologies τ_{1} and τ_{2} respectively, then the following are equivalent :
(i) τ_{2} is finer than τ_{1}.
(ii) For each basis element $B_{1} \in I B_{1}$ and $x \in B_{1}$, there is a $B_{2} \in I B_{2}$ such that $x \in B_{1} \subset B_{2}$.

4 Answer the following:
(a) Prove that the topologies of \mathbb{R}_{l} and \mathbb{R}_{k} are strictly finer than the standard topology of \mathbb{R}, but they are not comparable with each other.
(b) Prove that the topology generated by a sub basis δ is defined to be the collection τ of all unions of finite intersections of elements of δ.

5 Answer the following :
(a) If A is a subspace of X and B is a subspace of Y, then prove that the product topology on $A \times B$ is same as the topology $A \times B$ inherits as a subspace of $X \times Y$.
(b) Let X be an ordered set with ordered topology; let Y be a subset of X that is convex in X. Prove that the order topology on Y is same as the topology Y inherits as a subspace of X.

6 Answer the following :
(a) Let X, Y be topological spaces and let $f: X \rightarrow Y$, then the following are equivalent :
(i) f is continuous.
(ii) For every subset A of X one has $f(\bar{A}) \subset \overline{f(A)}$.
(iii) For every closed subset B of Y, the set $f^{-1}(B)$ is closed in X.
(b) Let $f: X \rightarrow Y$ be continuous. If Z is a subspace of Y containing the image set $f(X)$, then prove that the function $g: X \rightarrow Y$ obtained by restricting the range of f is continuous. If Z is a space having Y as a subspace, then prove that the function $h: X \rightarrow Y$ obtained by expanding the range of f is continuous.

7 Answer the following :
(a) State and prove the Pasting lemma.
(b) Let $f: A \rightarrow X \times Y$ be given by the equation

$$
f(a)=\left(f_{1}(a), f_{2}(a)\right)
$$

Prove that f is continuous if and only if the functions $f_{1}: A \rightarrow X \times Y$ and $f_{2}: A \rightarrow X \times Y$ are continuous.

8 Answer the following :
(a) Let A be subset of a topological space X. Prove that $x \in \bar{A}$ if and only if every open set containing U intersects A.
(b) Let A be subset of a topological space X; Let A^{\prime} denote the set of all limit points of A. Prove that $\bar{A}=A \cup A^{\prime}$.

9 Answer the following :
(a) Let X be a metric space with metric d. Define $\bar{d}: X \times X \rightarrow \mathbb{R}$ by the equation

$$
\bar{d}:(x, y)=\min \{d(x, y), 1\}
$$

Prove that \bar{d} is a metrics that induces the same topology as d.
(b) State and prove the sequence lemma.

10 Answer the following :
(a) Prove that a finite Cartesian product of connected spaces is connected.
(b) (i) Prove that a space X is locally connected if and only if for every open set U of X, each component of U is open is X.
(ii) If X is a topological space, each path component of X lies in a component of X. If X is locally path connected, then prove that the components and path components of X are same.

JBF-003-1161003 Seat No.
M. Sc. (Sem. I) Examination

December - 2019
Mathematics : CMT-1003
(Topology - I)

Faculty Code : 003
Subject Code : 1161003

Time : $\mathbf{2} \mathbf{2}$ Hours]
[Total Marks : 70

Instructions :

(1) There are five questions.
(2) Attempt all the questions.
(3) Each question carries equal marks.

1 Answer any seven questions.

a) Define: Closed set. Give an example to show that arbitrary union of closed set need not be closed.
b) Prove that a space (X, τ) is a discrete space if and only if $\forall x \in X,\{x\} \in \tau$.
c) Define: Convergence sequence in a metric space.
d) State Hausdorff's Criterian.
e) Define: Interior of a set. If $A \subset B$ then prove that $A^{\circ} \subset B^{\circ}$.
f) Define: Continuity of a function at a point.
g) Prove that locally connectedness is topological property.
h) Define: Co-finite topology.
i) Define: Homeomorphism with an example.
j) Define: Locally path connected space.

2 Answer any two.

$$
2 \times 7=14
$$

a) Prove that lower limit topology on \mathbb{R} is finer than the standard topology on \mathbb{R}.
b) Prove that $\tau=\{U \subseteq \mathbb{R}$; for each $x \in U$, there is an open interval $(a, b) \ni(a, b) \subset U\}$
c) Let (X, τ) be topological space. Then prove that

1) X, \varnothing are closed set.
2) Arbitrary intersection of closed set is closed.
3) Finite union of closed set is closed.

3 Answer the following.
a) Let (X, τ) be topological space and Y be non-empty subset of X.

Let $\tau_{Y}=\{G \cap Y ; G \in \tau\}$.
b) Let X and Y be topological spaces. Then prove that
$\mathcal{B}_{X \times Y}=\{U \times V ; U$ is open in X and V is open in $Y\}$ is a basis for some topology on $X \times Y$.

OR

a) If (X, d) be a metric space and $\mathcal{B}=\{B d(x, \varepsilon) / x \in X, \varepsilon>0\}$ then prove that \mathcal{B} is a basis for some topology on X.
b) Let X and Y be spaces. $A \subset X$ and $B \subset Y$. Then prove that $\overline{(A \times B)}=\bar{A} \times \bar{B}$

4 Answer any two.

$$
2 \times 7=14
$$

a) Suppose X and Y are fopological space and $f: X \rightarrow Y$ be any function. Prove that f is continuous iff f is continuous at every point of X.
b) State and prove Pasting Lemma.
c) Prove that

1) If $A \subset X$ then $\overline{\bar{A}}=\{x \in X$, for any open set U containing $x, U \cap A \neq \emptyset\}$:
2) If $A \subset X$ then $\bar{A}=A^{\prime} \cup A$.

5 Answer any two.

$$
2 \times 7=14
$$

a) Prove that $X \times Y$ is a locally path connected if and only if X and Y are locally path connected.
b) If X is connected and locally path connected then prove that X is path connected
c) Suppose X and Y are topological space. If $f: X \rightarrow Y$ is continuous and onto. If X is connected then prove that Y is also connected
d) Prove that

1) If C is a component and A is a connected set then either $A \cap C=\emptyset$ or $A \subset C$.
2) If C is a component then C is a maximal connected subset of X.
3) If C is a component then C is a closed subset of X.

HEL－003－1161003 Seat No． 015008
M．Sc．（Sem．1）（CBCS）Examination
November／December 2017
Mathematics ： 1003
（Topology－l）（New Course）

> Faculty Code : 003
> Subject Code : 1161003

The： $2 \frac{1}{2}$ Hours］
［Total Marks ： 70

Instructions ：

（1）There are five questions．
（2）All questions are compulsory．
（3）Each question carries 14 marks．

1 Fill in the blanks ：（Each question carries two marks）
（1）If every subset of X is closed set of X then the topology on disposure X is dis．topology．
（2）In a topological space X \qquad and \qquad are both open and closed set．
（3）In R the closure of the set of rational numbers is \qquad ．
（4）If A contains all its limit points then A is \qquad chapel set．

$d 3$

（5）The set of natural numbers is a closed set in \mathbb{R} when \mathbb{R} has \qquad topology．
（6）The number of components of a disconnected space is at lean \qquad ．
（7）A subset G of X is open if and only if $\mathrm{G}^{\circ}=$ \qquad ．

2 Attempt any two :
Ala) Give an example to show that denumerable (18) intersection of open set need not be open.
(b) Let A be a subset of X. Prove that $X \backslash \bar{A}=(X \backslash A)^{0}$
(c) Let A subset of X and B subset of Y. Prove that:
(1) $\overline{(A \times B)}=\bar{A} \times \bar{B}$.
$\frac{(2)}{(6)}$ Prove that for any subset A of $X\left(A^{0}\right)^{0}=A^{0}$. (58)

3 All are compulsory :
(a) Give the definition of separation of a space X.

Find one separation for the subspace of natural numbers and deduce that this space is disconnected.
(Lix (b) Prove that every component is a maximal connected set and it is a closed set.
(5S (c) Prove that every path connected space is connected.

OR

3 All are compulsory :
100 N(2) Prove the subspace $(0,1)$ is homeomorphic to (a, b) of \mathbb{R}.
(b) Suppose $f: X \rightarrow Y$ is continuous and Z is a subspace of X. Then prove that the function $f / Z: Z$ to Y is continuous.
(c) Prove that the set of all natural numbers has no limit point in R when \mathbb{R} has the standard topology.

4 Attempt any two :
(a) Prove that $X \times Y$ is a locally connected if and only if 7 X and Y^{*} are locally connected.
(b) Give example of a connected space which is not locally connected and give an example of a locally connected space which is not connected.
(c) Suppose (X, τ) is a topological space where $\tau=\tau(\mathrm{d}), 7$ for some metric d on X, let $E \subset X$ and x e X. Prove that $x \in E$ if and only if there is a sequence in E which converges to x.

5 Do as directed (Each question carries two marks)
(1) Give the definition of a convex subset of a simply ordered set.

Give an example of a closed subset of \mathbb{R} with discrete topology which is not a closed subset of \mathbb{R} with standard topology. $\quad[a, b) \quad(0,1]$
(3) Give an example of a subset of \mathbb{R} which is closed when \mathbb{R} has standard topology but it is not closed when \mathbb{R} has co - finite topology. au\} ~
(4) Find all interior points of the set of all rational numbers when \mathbb{R} has the standard topology.
(5) Give an infinite subset of \mathbb{R}_{l}, which is both open and closed.

- (6) Give the definition of the dictionary order on $\mathbb{R} \times \mathbb{R}$.
- (7) Give the definitions of closure and the interior of any subset

A of a topological space X.

MBZ-003-1161003 Seat No.
M. Sc. (Sem. 1) (CBCS) Examination

$$
\text { December - } 2016
$$

Mathematics : Course No. - 1003
[Topology - I]
(New Course)

Faculty Code : 003

Subject Code : 1161003

Time : $2 \frac{1}{2}$ Hours]
[Total Marks : 70

Instructions : (1) There are five questions.
(2) All questions are compulsory.
(3) Each question carries 14 marks.

1 Fill in the blanks : (Each question carries two marks)

(1) If every subset if X is open set of X then the topology on X is subspace topology.

\mathbb{R} (3) In \mathbb{R} the closure of the set of rational numbers is \qquad
(4)- A contains all its limit points then the closer of A is equal to

$$
\text { A } \quad A \subset A \Rightarrow A=A
$$

Standard (5) The set of irrational numbers is an open set in \mathbb{R} when hast \mathbb{R}
ST topology

is the intersection of all closed sets containing A

3) (ה) Give
A^{4} (b) contains all its limit points.

$$
\begin{equation*}
(A \times B)^{0}=A^{0} \times B^{0} \tag{1}
\end{equation*}
$$

$48 \frac{V^{2}}{}$ Prove that for any subset A of $\mathrm{X}\left(A^{0}\right)^{0}=A^{0}$.

3 All compulsory :
(a) Give the definition of separation of a space X. Give one separation of a discrete space with atleast two points.
(c) Lat A subset of X and B subset of Y. Prove that : Prove that such a space is always disconnected.
(b) Prove that every component is a maximal connected set and it $4 V$ is a closed set.
(c) Give an example of a connected space which is not path connected, Give an example of a connected space which is not locally connected.

OR

3 All compulsory :
-y (a) Prove the subspace $(0,1)$ is hompomorphic to (,$~ b)$ of \mathbf{R}.
(b) Suppose $f: X \rightarrow Y$ is soctinuous and $g: Y \rightarrow Z$ in continuous 4 then prove that goff $X \rightarrow 2$ is continuous.
(c) Prove that the interior of the set of all rational numbers in $\mathrm{R} \leq$
(with standard topology) is empty
(c) Prove that the latritor of the set of all rational numbers in $\mathrm{R} s$
(with standard topology) ha empty ${ }^{\text {a }}$.
(c) Prove that the latritor of the set of all rational numbers in $\mathrm{R} s$
(with standard topology) ha empty ${ }^{\text {a }}$.

4 Attempt any two:
(a) Prove that $X \times Y$ is a locally connected if and only if X and Y,
(b) Prove that $X \times$) is path comected if and only if X and y are 7
(c) Suppose (x, t) is a topological space where $t=8(d)$, fir \quad, some metic d on X, let $E \in X$ and $x \in X$. Prove that $x \in E \quad 1 f$ th it and only if there is a sequence in E which converges to x

5 Do as directed : (Each question carries two marka)
(1) Give the definition of a limit point of a set
(《) Give an example of a closed subset of R with discrete twology which is not a closed subset of \mathbb{R} with standard topology.
(3) Give a separation of the space of all irrational numbers.
(9) Find all interior points of the set of all irrational numbers then
ex has the standard topology
(S) Give an infinite subset of R which is neither open nor closed \mathbb{Q}

- (6) Give the definition of a component of a space. 2 .
(7) Give the definitions of
(i) a continuous function and 2

BRN-003-016103 Sal No. \qquad
M. Sc. Mathematics (Sem. I) (CBCS) Examination

Faculty Code : 003
Subject Code : 016103

Time : 2.30 Hours]
['Total Marks : 70
Instructions : (1) There are five questions.
(2) All questions are compulsory.
(3) Each question carries 14 marks.

1 Fill in the blanks: (Each question carries two marks)
14
(1). If every subset of X is closed set of X then the topology on X is disMeftopoiogy.
(2) In a topological space $X,\{x\}$ and ϕ are both open and closed set.
(3) In R the closure of the set of irrationals is \mathbb{R}_{C}
(4) If A is a closed set then A contains all its $\frac{\operatorname{limit}}{\text { polit }} \frac{Q}{(R-Q)}=R$
(5) $[0,1)$ is an open set in love topology on \mathbb{R}.
(1) If every finite subset of X is closed then the topology on X is
\qquad topology.

(7) Urysohn lemma is equivalent to complete separation axioms.

2 Attempt any two:

(a) Prove that the finite union of closed sets is a closed set.
(b) Prove that a subset G of X is open if and only if $G^{0}=G . \quad 7$ Give an example of a nonempty subset of R whose interior is empty.
(c) Ler A subser of X and B subse of Y. Prove :hat
$(43), \quad(1) \quad(A \times B)=d(A) \times d(B)$
(2) $A \times B$ is a closed subset of $X \times Y$ if thed only if A is $A \times B$ is a dosed subset of $X \times Y$ (X denotes the closure
closed in X and B is closed in Y (of a sel)

3 All compulsory
(1) Give the definition of closure of a subset of a topological space X.

Find the closure of $\left\{1, \frac{1}{2}, \frac{1}{3}, \ldots \ldots \frac{1}{n} \ldots \ldots\right\}$.
(b) Prove that every T_{2} space is a T_{1} space.
(c) Suppose Y is a subspace of a regular space X. Prove that Y is a regular space.

OR

3 All compulsory
(2) If X is a topological space and f is defined as $f(x)=x$ for all x then prove that f is a contiriuous function.
(C2), (b) Suppose $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are eontinuous.
4 Prove that gof : $X \rightarrow Z$ is continuous.
(c) Prove that the set of all natural numbers has no limit point 5
in R .
4. Attempt any two
(a) Prove that $X * Y$ is Hausdorff space if and only if X and $Y ~$
are Hausdorff spaces
(b) Write the statement of the Uryhohn lemma and using it prove 7 that every normal space is completely regular space.
(c) Suppose X,Y,Z are topological spaces and $f: Z \rightarrow X \times Y$ is a function. Prove that f is continuous if and only if the functions Π_{1} of and Π_{2} of are continuous functions.

g

5 Do as directed (Each question carries :womarki
(1) Give the defmition of a simply ordered set
(2) Give an example of an open subset of R with lower limit topology which is not an open subset of R with standard topology.,
(3) Give an example of a subset of \mathbb{R} which is closed in the discrete topology of R but not closed in the standard 'topology.

(4) Give an example of a normal space X for which $X \times X$ ' is not normal.
(5) Give an infinite subset of \mathbb{R} which is neither open nor closed. φ, φ^{c}
(6) Give the definition of dictionary order on $R \times R$.
(7) Give the definitions of
(68) \rightarrow (i) Homomorphism and

(ii) Topological property.

Ni. SC.. (Maths) Sem.-1 (CBCS) Examination
December-2014

Time : $21 / 2$ Hours]

[Total Marks : 70

Instructions : (1) There are five questions.
(i) All questions are compulsory.
(3) Each question carries 14 marks.

1. Fill in the blanks: (Each question carries two marks)
(a) If every subset of X is an open set of X then the topology on X is. \qquad topology:
:(Usual, Lower Limit; Discrete, Indiscrete) \vdots
(b) In every topological space there are ${ }_{5}$....... open sets.

(d) If A contains all its limit points then A is
(open, cloged,finite, infinite)
(e) $[0,1)$ is an open set in \qquad topology on \mathbb{R}.
(Lower limit, Standard, Cofinite, Indiscrete)
(c) If ever; AFfix aube ur X is closed then X must be a \qquad space.
(T_{1}, T_{2}, Regular, Normal).
2. Attempt any two:
\curvearrowright (a) Suppose $F_{1}, F_{2}, \ldots \ldots . F_{n}$ are closed sets. Prove that their union is a closed set.
(5) ${ }^{\text {(b) }}$ Let X be an infante set. Prove that the family $T=(G \subset X: X I G$ is finite) $U\{\phi\}$ is topology on X.
cosinite to pu;
S. At amatory:
(a) Give the definition of imit point of a sch A of a topological space X. Prove that 0 is the limit point of $\left\{1, \frac{1}{2}, \frac{1}{3}, \ldots, \frac{1}{n}, \ldots\right.$
(b) Prove that an infinite set with co finite topology is a T_{I} space.
(c) Suppose Y is a subspace of a T_{1} space X. Prove that Y is a T_{1} space.

All compulsory :
(a) If X is a topological space and f is defined as $\mathrm{f}(x)=x$ for all x then prove that f is a continuous function.

OR

b) Suppose $f: X \rightarrow Y$. Prove that f is continuous if and only if the inverse image of every closed subset of Y is a closed subset of X.
(c) Establish that every real number is a limit point of \mathbb{Q} - the set of rationals.
4. Attempt any two :

2(a) Prove that $X \times Y$ is a T_{1} space if and only if X and Y are T_{1} spaces.
(b) Suppose $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are continuous. Prove that oof $: X \rightarrow Z$ is continuous.
(c) Suppose X and Y are topological spaces, Prove that the family $\{Y \times Y, U$ is
open in X, V is o pen in $Y\}$ is a basis for some topology on $X \times Y$.
5. Do as directed (Each carries two marks) :
(a), Give the definition of a simply ordered set.
(b) Find the closure of Q- the set of rationals.
(c) Give an example of a subset of \mathbb{R} which is open in $\quad \theta^{\prime}=R$
(c) Give an example of a subset of \mathbb{R} which is open in lower limit topology but not
open in the standard topology.
(d) Give the definition of a completely regular space.
(d) Give the definition of a completely regular $[0,1]$?
(e) Give an infinite subset of \mathbb{R} which is not open. \mathbb{N}

(g) Give the definition

003-016103

M.Sc. (Waths) ICBCS) Sem.-I Examination

November- 2013
Mathematics
Paper No. : 1003 (Topotogy - !)
Facuity Code : 003
Subject Codi: : 016103
|Total Marks : 70

Time : 2% Hours]

Instructions: (1) There are five question:s.
(2) All questions arc cempulsery.
(3) Euch questions carries 14 narks.
(4) Figures to the rignt indicates full marks.

1. F:ll in the blainks : (Each carries two marks)
(i) If X is a T, s?ace then crery finite subsel of X is \qquad $-$
(ii) If X is a Housdorlf space then arre subspace of X is \qquad \because
(iii) If $^{\prime} A$ is closed then A contains all
\therefore \qquad point of A.
(iv) If X discrete space then aery subser $a[x$ is a \qquad sel.
(1) If U is an upen subsel $w \mathscr{C}$ and Y is lopological space then $U x, Y$ is a subsel af $X \times Y$.
((i) Arbitrary inters:cion of clased sels if: : \qquad sci.
(ii) Urysohn's com is equiralem (o) spate.

Altempl any (wo:
 iopologe an λ.
(t) Prove that the cullection of all open intervals of R is basis for some (iopolues on k. $R=$ the s:i af real nambers)
(c) Prove that a finite union of clesed se.s is a closed sel. (ive an example to. show that arbitrary nimion of elosed sets may mot be closed.
3. Ailempl all:
(i) L.cl Y be a subspace of X. Prowe that a st.bsel K of Y^{\prime} is closed in Y^{\prime} if and unls if $K=F \cap Y$ lor suma closed anbsel F of X.

13

 in Y^{\prime} if and only if it is closed in X.
(c) Prose that $(0,1)$ is homeomorphice (o) at at for an a ald 5 in $: 2$ "! $a<b$.

()R

Allempt all.
 if and only if A is an open set.
 that
(1) If $A \subset B$ then $\operatorname{cl}(A) \subset \operatorname{cl}(B)$.
(2) $\operatorname{cl}(A, B)=\operatorname{cl}(A) \ldots c l(B)$.

 a sequence (.xn) in E such that ion conte ass lar.
4. Atlempl any two:
 space which is not regular.
(h) Prove that every closed :abused of a mom al space is na :man.
(c) Prove that:
(i) Regularity is a lopologicial properly.
(ii) $x \times y$ is :cgular ii X and $)^{\prime}$ are reg(ii:ar.
5. Do as director: Each carries a mark: :
(i) Define the closure \bar{A} ul an! subs! A al
(ii) Find all limit points of (0.1).
(iii) Give the definition al a closure of a subset A ai a space: al \therefore
 $A^{\prime} \subset A$.

(vi) (jive an example of a nun-c!nply ser such ital for?

\qquad
B:Sc: Mathematics Semester-I (CBCS) Examination $\%$
Octaber! Nowemiber 2012
Paper No. 10013 Topologr-1)
Tirac: 212 Hours
Tonal Mark: ? ?

Instructions: 1) There are give 5 (ucstinus
2) All questions arc b:chim liory
i) Fach yusetion catrric: 1- marks

4) Figures in the righ: indicanes marks

Q:1 FiE in the blanks : ibach carries ino marks)
a. If X is a T_{1} space then exery singleton subsel of X is....sed.5es'
b) If X is a Housserrit sace then the set $(x . x): x \in X)$ is a !..... sed.
c) If A contsins all $i: s$ limit priinss tive A must he \qquad
d) If every sibse: if X is in open subset of X inen the tipnotigy on X must be didusete.
a) If U is open ir $X . V$ is npen ir: Y then $U x\rangle$ is open in $X x Y$

() Arhitrary mernectimn onen ets... X.upen nees not be open

Q:2 Nt:cmpt any Two

 ham : is a tupulnuy on x.
 thesel of all real numbers
 example to show that arbitraty unino of closed sets need not be closed.

Q:3 Answer the following

[^0]

 in) ill in is clomed in X
$1!2$

(1) $\therefore=018-. A^{\circ}$ i! am!
(ii) • iか! $31^{\prime \prime}=\wedge^{\circ}$! $!$

 subsed ol χ.

Q:4 Attempt any (wo):

 Whith : : ! ! :-1 :m: T :

 $=f$. Prove that X is a neman! ypace

- Frace han:

Q:5 Do as directed : Fach carrare - martis.

ABA=ゅ.
$A=!1 / 2 \cdot \frac{1}{4}, \frac{1}{6}, \ldots \%$
(v) find wo disjoint oper whers of R containine points 1 and $1.5<\square$ is (i) Sive an example of a nomemp! sel T such that $T^{\prime \prime}=0 . \quad V 1^{\circ}=N$
(vii) (atue the definition of : merric un :1 se: \propto.

$$
\because \because \therefore \quad \therefore \quad 3
$$

$(+2,13 \quad(, y)=6,1$
A., , , iry,

1, 1.0 ! ! ! !

003-016103/B-61 Seat No

M. Sc. (Sem. 1) Exammation

November / December - 201)
Mathematics

Faculty Code : 003
Subject Code : 016103
Time: 3 Hours]
[Total Marks : 70

Instructions : (1) There are five questions.
(2) Each questions carry 14 marks.

1 Answer any seven :
$\sim(1)$ Write down all open sub sets of discrete topology on $\{a, b, c, d\} \cdot d$

- (2) Write three subsets of 1 B , one F ? caused, second 1 s open
() Write down interior and nop-intgriar points of $[0$ i] (ant)
$\rightarrow 4$ Suppose X has cofinite topology Let $a, b \in X$ what is the
closure of $\{a, b\}=a a \cdot b\} p 2 b\}-5$
(2) Write down a subset of if which contains all its limits points and its interior is empty. subset of in. Putto P N-S
$\therefore 17$ Suppose x has cofinite topology and a e X Give a closed subset of X which does not contain a

Wo r on th is stoutly firm (han the standard topology 280
(a) Give an lame limp quarpets need not be open. If
(c) Let X be an infinite sect and let

ब $[\tau=\{G \subset X: X-G$ is finite $\} \cup\{\phi\}$ prove that τ is topology on $X 1 O$
3. (a) Let X be a space and Y be a ron-empty subset of X. Prove that $P_{\underline{Y}}=\{G \cap \underline{Y}, G$ is open in $X\}$ is a topology on $\underline{y} \zeta^{3}$
(2) Prove that $f: X \rightarrow \underline{Y}$ is continuous ff $f(\bar{E}) \subset \bar{f}(E)$ for each subset E of X

or

3 (a) S rove that $A \cup A=N 6$
(b) Hove that $(\overline{A \times B})=A \times \bar{D} b^{\alpha}$
(b) Grove that $(A \times B)=A \times B$
(c) Prove that a set A is closed of $A \subset A$. $\subset Q$
4. Attempt any two
\rightarrow (9) Prove that the collection of all open discs in a metric space (x, d) is a basis for some topology on X ㄲ
(b) Let d be a metric on X and $\tau \subset \tau(d)$ Let $A \subset X, \quad$. Prove that $x \in \bar{A}$ ff these is a sequence $\left(x_{n}\right)$ in A such that $\left(x_{11}\right) \rightarrow x$ OC
α (c). Give a topology on \mathbb{R}^{R}, a subset E of A P and

2 Answer any two

(a) Prove that lower limit tepuluy in is strictly finer than the standard topology. 28
a.) (b) Give an example to show that countable intersection of 7 operpets need not be open. 18 ,
(c) Let X be an infinite sect and let
$4 .-\tau=\{G \subset X: X-G$ is finite $\} \cup\{\phi\}$ prove that τ is

topology on $X \mid O$

3 (a) Let X be a space and Y be a nonempty subset of X. Prove that $P_{\underline{r}}=\{G \cap \underline{Y}: G$ is open in $X\}$ is a topology on $y \zeta^{n}$
(20) Prove that $f: X \rightarrow Y$ is continuous ff $f(\bar{E}) \subset \bar{J}(E)$ for each subset E of X

OR

3 (a) Prove that $A \cup A=A \cup$
(b) Prove that $(\overline{A \times B})=\bar{A} \times \bar{B} ?^{\alpha}$
\sim (c) Prove that a set A is closed iff $A \subset A$.

4. Attempt any two :
$\sim(q) \because$ Prove that the collection of all open discs in a metric space (X, d) is a basis for some topology on $X \mathbb{9}$
(b) Let d be a metric on x and $\tau=\tau(d)$ Let $A \subset X$;

Prove that $x \in \bar{A}$ ff these is a sequence ((x) in A such that $\left(x_{n}\right) \rightarrow x$ sC
α (c) Give a topology on \mathbb{R}^{R}, a subset E of \mathbb{B}^{P} and
$\therefore \in E$ such that there is no sequence (x_{n}) in E such that $\left(x_{n}\right) \rightarrow x$
(5) Attempt any thu pol 7
(a) Define a smmemel ape

11 of X and 11 pace lea A be a connected salem i \cdots (b) Suppose/ x and connected. $11 G^{- \text {are connected prove that } x \times \underline{Y} \text { is } 7}$ Prove that every path onnnected space is connected. 1387 Give an example of a connected space which is not connected 139 Prove that a space \bar{X} is locally connected if and only 7 if/ each component of each open set is open in X. 130

$$
003-016103
$$

CHat No
M. Se. (CBCS) (Sem. I) Examination

December - 2011
Mathematics : 1003
(Topology I)
(New. Course)
Faculty Code : 003
Subject Code : 016103
Total Marks
Time : 2.30 Hours
Instructions : (1) There are 5 questions.
(2) All questions are compulsory.
(3) Each question cares 14 marks.
(4) Figures on right indicate marks

1 Fill in the blanks : (any seven)
(1) If every subset of X is.cleser then the topulory of x is sidaced topology.
(2) If f is a topology on x then \qquad are always members of T.
(3) If A is a closed then the closure $\overline{\mathrm{A}}=$ \qquad
(4) The standard topology on R is Storifily then the lower limit topology on $i R$.
(5) Arbitrary intersection of clucsel sets is closed in any topological space.
(6) If A contains all its limit points then the closure $\bar{A}=$ AUS
(7) If $a(x, y)=|x-y|$ for all x, y in $I R$ then the topology induced by d on $I R$ is metric topology.
(8) Interior of the set of all rational numbers in $I R$ is区
(9) The suberne troy on the st it of at aral number indian from is is olvbstanate
(10)
 corot.

2 Answer any two : 20
(a), Give the definition : Basis for some topulngy on a
set X. Let $B=\{(a, b), a<b, a, b \in \mathbb{P}\}$, move that B is a basis for some topology on $I R$ the set of red numbers. 20
(b) Let (X, τ) be a topological space and Y be a

7
nonempty subset of X . Prove that $\tau_{Y}=\{G \cap Y: G \in \tau\}$ is a topology on $Y, 53$
(c) Define the closure \bar{A} of a subset A of X. Prove that

$$
\begin{aligned}
& (-)^{(i)} \quad \bar{A}-\bar{A} \text { for any } A \subset X \cdot 38 \\
& \sim \text { (Xii) } \bar{A}=A \cup A^{\prime} \cdot \angle 6
\end{aligned}
$$

48

(a) Define the interio A° of $A C \therefore$. Prove that

$$
\text { (i) }(A \cap B)^{\circ}=A^{\circ} \cap B^{\circ} 50
$$

\rightarrow (ii) $\left(A^{\circ}\right)^{\circ}=A^{\circ}: 50$
(b) Prove that
(i) $\overline{X-A}=X-A^{\circ}$
(ii) $\left(x-A^{\circ}\right)=x-A$ for $A \subset X=\rightarrow$
\sim (c) Give an exam to show that
(i) $(A \cup B)^{0} \not A^{\circ} \cup B^{\circ}-\leq 1$
(ii) $\overline{A \cap B} \neq \bar{A} \cap \bar{B}$
[JAL-725-003-016103]

$$
\begin{array}{r}
\mathrm{OR} \\
2
\end{array}
$$

22

3 (a) Let (ir. d) be a mote ante.
 that $\left(x_{n}\right) \rightarrow x$. yo
(b) Let d be the standard metric and p be the square metric on $I R^{2}$. Prove that $\rho(\vec{x}, \bar{y}) \leq d(\bar{r}, \vec{j}) \leq \sqrt{2} p(\bar{x}, \vec{j})$ for all x, \bar{y} in $J R^{2}$. Also prove that the topology induced by d the topology induced by ρ.

> (a) (i) Prove that a subspace of a regular space is regular.
> (iii) Prove that $X X Y$ is regular jiff X and Y are both regular.
(b) State and prove Urysohn's lemma.
(c) State and prove Tiptze's extension: theorem.

5 (a) Give an example of a Th space whin is :ut : 7_{2} space.
(f) Give the definition of a metric on a nom empty set X.

$-)^{(c)}$ Give: an example to show that infinite intersection of open sets may not be open: $188: \because$
$)^{(d)}$ If $F: X \rightarrow Y$ is continues then prove that $f^{-1}(X)$ is a closed subset of X whenever K is a closed subset of y

NSc semi Maths Examination Mantymil October 200 8

$$
\text { Topology } \quad\left[\begin{array}{c}
\text { Total mande } \\
100
\end{array}\right]
$$

(Old, Now or Old \& Now to be mentioned where necessary)
rimes 3 holes
(1) There are nine questions in this poss,
(2) Answer any five questions.
(3) Each question caries twenty wants
(x) Figures on right indicate mashes
N.E: : Gujarati Version of question paper is to be written first. English version show follow the Gujarat version of question paper.
Qu s (a) Suppose pe ans $z^{*}\{G \subseteq x / p \in G\}$ U\{q\} . ~ S t e n t ~ t h a t ~ z is c topology an x.

$$
[7]
$$

(b) Suppose x is an infinite set on f τ be the co-finite topulosy on. x. 1 C rove the cot every simple ton set of element of x is closed in T [$]$
(c) Prove that the Lover Unit topology. an P is strictly finer than the stempand topology on \mathbb{R}.
[7]

To be filled by the Press.
te: Fulltarks of each question to be indicated in a circle at i he ightond of the first:
 and β_{1}, β_{2} be basion for, \bar{z}_{2}, asper Prove that Z_{2} is finer than τ_{1} if f and $c_{1} \in \beta$, and $x \in C_{1} \nexists c_{2} \in \beta_{2} \Rightarrow$ $x_{1} C_{12} \subseteq C_{1}$.
(b) Suppose x be a topological space and A, B, C are subsets of X. Then prove then
(I) $\overline{A \cup B}=\bar{A} \cup \bar{B}$ and
(II.) $\bar{n}=A$ inf A is closed in x. [I:

Q-3(i), Prove that the family $\beta=\{u \times v, u$ is an open set in x and V is open in y ? is a basis for sure topologist on $x \times y$.
(b) Suppose (x, τ) be a topological spare ans $y \subseteq x$. Then show that the family $\tau_{y}=\{G \cap y / G \in \tau\}$ is a topology on $\%$. [8]
(c) Suppose x, y be topological spaces. Them shop that the projection map $\pi_{土}: x \times y \rightarrow x$ defined by $: \pi_{1}(x, y)=x, \forall(x, y) \leqslant x x y$ is a continuous map.

Q-4 (a) Define a continuous map $f: x \rightarrow y$. Prove that $f: x \longrightarrow y$ is continuous if $f^{-1}(k)$ is closed in x whenever k is closed in y.

$$
[10]
$$

 η I finite set and the subspace topology : pee ma N, as a subs of AR with stmdat f topology ane discrete topologies 1107

3
of $Q=5$ (a) Suppose (x, d) be a metric spae e and $\beta=\left\{B_{d}(x, \epsilon) / x \in \times\right.$ ans $\left.\in>0\right\}$, where
She $\quad B_{d}(x, \epsilon)=\{y \in x / d(x, y)<\epsilon\}$, Then prove

Lis that β is a basis for somme topology on x. [10]
(b) Suppose X be a metrizab́le space ant $E \subseteq x$. If $x \in \bar{E}$ then prove that \Rightarrow a sequence $\left(x_{n}\right) \subseteq E \Rightarrow x_{n} \rightarrow x$ in x. [iou

Q- $6(a)$ Suppose $f: x \longrightarrow y$ be an onto map and X be a topological space. Shows that the collection $\tau=\left\{G \subseteq Y / f^{-1}\left(C_{1}\right)\right.$ is open in $X\}$ is a topology on Y. Also prove that $f: x \rightarrow Y$ is a apuotient map. $[10]$
(b) Suppose $f: x \rightarrow y$ is a quitrent map and $g: y \rightarrow z$ he a map, where x, y, z ane topological spices: Prove that g is continuous ifs gof: $X \rightarrow I$ is a continuations map. $[10]$
 phove that $x \times y$ is also connected space [8]
(t) Suppose x be a space ano $A, B \subseteq x$ two cmmected subsets of x with $A A_{1} R$ \# So. Prove that $A \cup B$ is a commected subset of

$$
\left[\begin{array}{ll}
6
\end{array}\right]
$$

($*$) syopose x Is a corinected space and I: $x \rightarrow y$ be an onto centinuolis map. Tram prone thet y is connected space. [G]
(1)- 8 (a) Prove that a space x is lucally connected iff exen comporient of each ofecu set is cin oraen subset of x.
(t) Frove that I X with dictionary ondes fopolosy is conneited. but mot path ommerted, [10] where $I=[0,1] \ldots$
(-9 (9) Prove that a spaie \times is Liedly path sonnected iff eate componerit of exch open set of x is an oper subeset of x.
(o) Give on example to show that e path Comproment nevel rot be encuat to a Componemil.

PCE 003-1161008

M. Sc, (Sem. 1) Bsamination December $=3014$

$$
\begin{gathered}
\text { Mathematise : OMUT-1008 } \\
\text { (Thphlogy }=11
\end{gathered}
$$

Faculty Code : 009
 Subject Code 1161003

Time : $2 \frac{1}{2}$ Hours
Thotal Marks: 70
Instructions : (1) Attempt all the questions,
(2) There are 5 questions.
(3) Figures to the nght indicate foll marks.

1 Attempt any seven : (Each question carries two marks) 14
(1) Give an example of a subset of \mathbb{R} which is open in
lower limit topology but not but not open in the standard topology. [u.b?
(2) Give the definition of a convergence sequence in a topological space X.

- (3) Give the definition of a closure of a subset A of a space of X.
(4) Give an example of a homeomorphism from \mathbb{R} to \mathbb{R}. $\mathbb{C}=26, x$,
-(5) Give an example of an uncountable subset of \mathbb{R} which is not an open set.
- (6) Give an example such that $\bar{A} \cap \bar{B} \subset \overline{A \cap B}$, where A and B are subsets of X.

2 Attempt any two :

 X.
(b) If X, Y, Z be spaces then prove that $f \Rightarrow \Rightarrow x \subset y$ continuous if and only if the functions $y_{9}^{A} f Z \rightarrow X$ and $\pi_{2}{ }^{\circ} f: Z \rightarrow Y$ are continuous.
(c) If X and be spaces and $A \subset X, B \subset X$ then prove that
(1) $\overline{A \times B}=\bar{A} \times \bar{B}$ and (2) $(A \times B)^{*}=A^{*} \times B^{*}$.

3 Attempt the following :
(a) If Y be a subspace of X then prove that
(1) A subset A of Y is closed $\Leftrightarrow A=C \cap Y$ for some closed subset C of X.
(2) For any subset A of $Y, C l_{y} A=C l_{x} A \cap B$
(b) State and prove Hausdroff's Criterion.

OR

3 Attempt the following :
(a) If X is connected and locally path comeeded phem prove that X is path connected.
\checkmark (b) Prove that $X \times Y$ is a path comected if and oaly it 7 X and Y are path connected.

4 Attempt the following :
(a) If (X, d) be a metric space and $B=\{B a(x, \in) / A \in x, \in>0\}$ then prove that B is a basis for some topelesy on X.
(b) Prove that $X \times Y$ is a connected if and onty if X and are connected.
(a) Prove that
$t=\{U \in R$: for each $x \in U$, there is an open interval $(a, b)>x \in(a, b) \in U$ is topology on \mathbb{R}.
(b) Prove the followings :
(1) Every path connected space is connected.
(2) Prove that continuous image of connected set is connected.
(c) Prove that a space X is locally path connected if and only if each path component of each open subspace of X is an open subset of X.
(d) Prove that B_{1} and B_{2} generate the same topology, where $B_{1}=\{(a, b) / a, b \in \mathbb{R}, a<b\}$ and $B_{2}=\{(a, b) / a, b \in \mathbb{Q}, a<b\}$.

Seat No. \qquad

F8AA-003-1161004

M. Sc. (Sem. I) Examination December - 2022

Mathematics : CMT - 1004 (Theory of Ordinary Differential Equation)

Faculty Code : 003
Subject Code : 1161004
Time : $\mathbf{2} \frac{\mathbf{1}}{\mathbf{2}}$ Hours / Total Marks : 70

Instructions : (1) Attempt are total five questions.
(2) All are compulsory.
(3) Each question carries equal marks.

1 Answer the following : (any seven)
$7 \times 2=14$
(a) Write linear differential equation $y_{1}^{\prime}=y_{1}+y_{2}+f(t)$ and $y_{2}^{\prime}=y_{1}+y_{2}$ in the matrix form.
(b) Define with an example:
(i) Degree of a differential equation and
(ii) Linear differential equation.
(c) Show that: $\Gamma(z)=(z-1) \Gamma(z-1)$.
(d) State first and second fundamental theorem of calculus.
(e) Define :
(i) Wronskian and
(ii) Singular Point.
(f) State :

Shifting Property of Laplace transform for $z \in C$.
(g) If A and B be $n^{*} n$ matrix and $A B=B A$ then prove that $\exp (A+B)=\exp (A) \cdot \exp (B)$.
(h) Show that $e^{3 l}$ and $t e^{3 l}$ are linearly Independent solutions of $y^{\prime \prime}-6 y^{\prime}+9 y=0$ on R.
(i) Determine the largest interval of existence of solution for the I.V.P. :

$$
\left(t^{2}+4\right) y^{\prime \prime}+t y^{\prime}+(\sin t) y=1 ; \text { with } y(1)=2 \text { and } y^{\prime}(1)=0 .
$$

(j) State any two test for the test of convergence.

2 Answer any two of the following :

$$
2 \times 7=14
$$

(a) State and prove Gronwall's Inequality.
(b) Let $p_{1}, p_{2}, p_{3}, \ldots \ldots, p_{n}: I \rightarrow R$ be continuous then show that n solutions $\psi_{1}, \psi_{2}, \psi_{3}, \ldots \ldots, \psi_{n}$ of $y^{n}+p_{1}(t) y^{n-1}+\ldots \ldots+p_{n}(t) y=0 ; \forall t \in I \quad$ are linearly independent if and only if $w\left(\psi_{1}, \psi_{2}, \psi_{3} \ldots \ldots, \psi_{n}\right)(t) \neq 0 ; \forall t \in I$.
(c) Prove that the solution the I.V.P.
$y^{\prime \prime}-2 t y^{\prime}+2 n y=0 ; y(0)=0$ and $\quad y^{\prime(0)}=\frac{2(-1)^{m}(2 m+1)!}{(m)!} ;$
where $n=2 m+1 ; m \geq 0$ is an integer is a Hermite's Polynomial of degree $2 m+1$.

3 Answer the following :
(a) Find the Eigen values and Eigen vectors of Matrix $\left[\begin{array}{lll}6 & 3 & 0 \\ 0 & 2 & 2 \\ 0 & 0 & 1\end{array}\right]$.
(b) If $p, q: I \rightarrow R$ be continuous functions on I with $t_{0} \in I$ and $y_{0} \in R$ then prove that the initial value problem $y^{\prime}+p(t) y=q(t)$ with $y\left(t_{0}\right)=y_{0}$ has a unique solution.

$$
u(t)=y_{0} e^{\{-p(t)\}}+e^{\{-p(t)\}} \int e^{\{p(t)\}} q(t) \cdot d t \text { on } I .
$$

OR
3 Answer the following :
(a) State and prove variation of constant formula for $2 \times$ second order non-homogenous linear differential equation.
(b) Let A be a constant $2 * 2$ complex matrix then prove that \exists a constant $2 * 2$ non-singular real matrix T such that $T^{-1} A T=\left[\left[\begin{array}{ll}\lambda & 1 \\ 0 & \lambda\end{array}\right]\right]$.

4 Answer the following :
(a) Prove that if $a_{0}(t), a_{1}(t), a_{2}(t)$ which are analytic at t_{0} and t_{0} is a regular singular point of $a_{0}(t) y^{\prime \prime}+a_{1}(t) y^{\prime}+a_{2}(t) y=0$ then given equation can be written in the form
$\left(t-t_{0}\right)^{2} y^{\prime \prime}+\left(t-t_{0}\right) \alpha(t) y^{\prime}+\beta(t) y=0$ for some functions $\alpha(t)$ and $\beta(t)$ which are analytic at t_{0} and not all $\alpha\left(t_{0}\right), \beta\left(t_{0}\right)$ and $\beta^{\prime}\left(t_{0}\right)$ are zero.
(b) State and prove Abel's Formula.

5 Answer any two of the following :
(a) Define Legendre's polynomial and compute it for $1^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }}, 4^{\text {th }}$ and $5^{\text {th }}$ degree.
(b) If $f(t)= \begin{cases}e^{-\frac{1}{t^{2}}} & \text {; if } t \neq 0 . \text { Then prove that the Initial } \\ 0 & \text {;if } t=0\end{cases}$ value problem $y^{\prime}=f(t), y(0)=0$, has no analytic solution at 0 .
(c) Solve $y^{\prime \prime}+25 y=10 \cos t$ with $y(0)=2, y^{\prime}(0)=0$ using Laplace transform.
(d) Show that if $f(t), \frac{f(t)}{t} H$, then prove that :

$$
L\left(\frac{f(t)}{t}\right)=\int_{z}^{\infty} L(f(w)) d w
$$

For which Im (w) is bounded and $\operatorname{Re}(w)$ tends to infinite.

\qquad
M. Sc. (Sem. 1) Examination

February - 2022
Mathematics : CMT-1004
(Theory of Ordinary Differential Equation)

Faculty Code : 003
Subject Code : 1161004

Time : $\mathbf{2} \frac{1}{2}$ Hours]
[Total Marks : 70

Instructions : (1) Attempt any five questions from the following.
(2) There are total ten questions.
(3) Each question carries equal marks.

1 Answer the following :
$7 \times 2=14$
(1) Show that, $u(t)=\left[\begin{array}{l}e^{t} \\ e^{t}\end{array}\right]$ is a solution of $y^{\prime}=A(t) y$ on $(-\infty, \infty)$, where $A(t)=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ for every $t \in(-\infty, \infty)$.
(2) Define : Exponential of an $n \times n$ matrix.
(3) Reduce $y^{\prime \prime}+2 y^{\prime}+7 t y=e^{-t} ; y(1)=7$ and $y^{\prime}(1)=-2$ to an IVP of system of $1^{\text {st }}$ order linear differential equation.
(4) State, second fundamental theorem of calculus and find γ_{1}.
(5) Find the general solution of $y^{\prime \prime}+16 y=0$ on \mathbb{R}.
(6) Define : Inverse Laplace Transform and find $L[\cos a t]$.
(7) State and prove, Linearity of Laplace transform.

2 Answer the following :
(1) (a) Define : Gamma function.
(b) Define : Irregular singular point.
(2) Let A be a $n \times n$ matrix then show that, A has at most n distinct eigen values and A has atmost n Linearly independent eigen vectors.
(3) State, the Abel's formula.
(4) Locate and classify the singularity of $t^{2} y^{n}+t y^{\prime}+\left(t^{2}-n^{2}\right) y=0$.
(5) Show that, $\Gamma(z)=(z-1) \Gamma(z-1)$.
(6) Show that, $u(t)=\left[\begin{array}{c}\cos t \\ -\sin t\end{array}\right]$ is a solution of the initial value problem $y^{\prime}=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right], y(0)=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ on \square.
(7) Construct the successive approximation $\phi_{0}, \phi_{1}, \phi_{2}, \phi_{3}$ to a solution of $y^{\prime}=\cos y, y^{\prime}(0)=0$.

3 Answer the following :
$2 \times 7=14$
(1) Prove that, for a continuous matrix $A(t)$ of order $n \times n$ on I, the solution matrix $\phi(t)$ of $y^{\prime \prime}=A(t)$ on I is a fundamental matrix if and only if $\operatorname{deg}(\phi(t)) \neq 0 ; \forall t \in I$. Further if $\operatorname{det}\left(\phi\left(t_{0}\right)\right) \neq 0$; for some $t_{0} \in I$ then $\operatorname{det}(\phi(t)) \neq 0 ; \forall t \in I$.
(2) State and prove, variation of constant formula for scalar linear second order non-homogeneous differential equation.

4 Answer the following:

$$
2 \times 7=14
$$

(1) Prove that, the solution of IVP $y^{\prime \prime}-2 t y^{\prime}+n t y=0 ; y^{\prime}(0)=0$ and $y(0)=\frac{2(-1)^{m}(2 m)!}{m!}$; where $n=2 m ; m \geq 0$ is an integer is Hermite's polynomial of degree $2 m$.
(2) Find the eigenvalues of the matrix $A=\left[\begin{array}{lll}2 & -3 & 3 \\ 4 & -5 & 3 \\ 4 & -4 & 2\end{array}\right]$ and A^{-1}.
(1) Find the fundamental matrix of $y^{\prime}=A y$ on \mathbb{R}, where

$$
A=\left[\begin{array}{ccc}
-2 & 1 & 0 \\
0 & -2 & 0 \\
0 & 0 & -2
\end{array}\right]
$$

(2) Find $\exp (t A) ; \forall t \in(-\infty, \infty)$ for the matrix $A=\left[\begin{array}{ccc}-2 & 1 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2\end{array}\right]$ using its solution matrix.

6 Answer the following :
$2 \times 7=14$
(1) If $f(t)=t ; 0 \leq t \leq 1$ and $f(t+1)=f(t) ; \forall t \in[0, \infty)$ then find $L(f)(z)$.
(2) Solve $y^{\prime \prime}+y=2 e^{t}, y(0)=2=y^{\prime}(0)$, using Laplace transform.

7 Answer the following :

$$
2 \times 7=14
$$

(1) Define convolution. Further show that,

$$
L\left(\int_{0}^{t} f(s) d s\right)(z)=\frac{1}{z} L(f(z)), \forall f \in \mathcal{H} .
$$

(2) Find, $L^{-1}\left(\frac{1}{z\left(z^{2}+4\right)^{2}}\right)$.

8 Answer the followings :

$$
2 \times 7=14
$$

(1) Find the solution of the IVP $y^{\prime}=\left[\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right] y+\left[\begin{array}{c}0 \\ e^{-2 t}\end{array}\right]$ with

$$
y(0)=\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \text { on } \mathbb{R} .
$$

I Contd...
(2) Let A be a constant 2×2 complex matrix then prove that, there exists a constant 2×2 non-singular matrix T such that $T^{-1} A T$ has the following forms :
(a) $\left[\begin{array}{ll}\lambda & 0 \\ 0 & \mu\end{array}\right]$
(b) $\left[\begin{array}{ll}\lambda & 0 \\ 0 & \lambda\end{array}\right]$

9 Answer the following :
$2 \times 7=14$
(1) Find the eigen values and the corresponding eigen vectors of
the matrix $A=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -1 & -6\end{array}\right]$.
(2) Prove that, if $\alpha=2 m+1$ where m is a non-negative integer then the solution ϕ of the Legendre's equation with $y(0)=0$ and $y^{\prime}(0)=1$ is polynomial of degree $2 m+1$. Compute this polynomial for $m=0,1,2$.

10 Answer the following:
(1) Find the particular solution of $y^{\prime \prime}+y=\sec t ; \forall t \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.
(2) Let $A(t)$ and $g(t)$ be two continuous matrices of order $n * n$ and $n * 1$ respectively on $(-\infty, \infty)$ and consider any $n_{0} \in R^{n}$ then prove that, the unique solution of the intial value problem $Y^{\prime}=A(t) \cdot Y+g(t)$ with $Y\left(t_{0}\right)=n_{0}$ is :

$$
u(t)=\exp \left(t-t_{0}\right) A \cdot n_{0}+\int_{t_{0}}^{t}(\exp (t-s) \cdot A) g(s) d s ; \forall t \in(-\infty, \infty)
$$

B-003-1161004

Seat No.

M. Sc. (Sem. I) Examination
 March - 2021
 CMT - 1004 : Mathematics (Theory of Ordinary Differential Equation)

Faculty Code : 003
Subject Code : 1161004

Time : $2 \frac{1}{2}$ Hours]
[Total Marks : 70

Instructions:
(1) Attempt any five questions from the following.
(2) There are total ten questions.
(3) Each question carries equal marks.

1) Answer the following:
2) Define Linear Differential Equation and Linear Homogenous Differential Equation with an example.
3) Prove that for every $n * n$ real matrix $\exp (A+B)=e^{A} \cdot e^{B}$ provided $A B=B A$.
4) State and prove change of scale property in Laplace Transform.
5) Find two linearly Independent solutions of $y^{\prime \prime}+y=0$ on R .
6) Show that $u(t)=\binom{\cos t}{-\sin t}$ is a solution matrix of the initial value problem $y^{\prime}=$ $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right) y, y(0)=\binom{1}{0}$.
7) Find $L(\operatorname{Sin}(c t)) ; \forall c \in C$.
8) State Variation of Constant Formula for First Order Differential Equation.

2) Answer the following:

1) If y_{1}, y_{2} are solutions of $\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+n(n+1) y=0$ with initial condition $y_{1}(0)=0, y_{1}^{\prime}(0)=-1, y_{2}(0)=1$ and $y_{2}^{\prime}(0)=0$ then find $w\left(y_{1}, y_{2}\right)\left(\frac{1}{2}\right)$.
2) Define Power Series and Bessel's Function.
3) Determine the largest interval of Exisistance of the solution for the I.V.P for the equation:

$$
y^{\prime \prime \prime}+\left(t^{2}-1\right)^{\frac{1}{2}} y=0 \text { with } y(-1)=1 ; y^{\prime}(-1)=0 ; y^{\prime \prime}(-1)=-1
$$

4) Prove that $v_{1}, v_{2}, \ldots \ldots . v_{n} \in K^{n}$ are linearly dependent if and only if $\operatorname{det}\left[v_{1}, v_{2}, \ldots \ldots . v_{n}\right] \neq 0$.
5) Construct the successive approximation $\phi_{0}, \phi_{1}, \phi_{2}, \phi_{3}$ to a solution of $y^{\prime}=\cos y$, $y^{\prime}(0)=0$.
6) Check whether the Legendre's equation $\left(1-t^{2}\right) y^{\prime \prime}-2 t y^{\prime}+n(n+1) y=0$ has a series solution near 0 or not?
7) Define Heavy Side Function and Show that Laplace Transform is linear.

3) Answer the following:

1) Prove that the solution of the I.V.P $y^{\prime \prime}-2 t y^{\prime}+2 n y=0 ; y^{\prime}(0)=0$ and $y(0)=$ $\frac{2(-1)^{m}(2 m)!}{(m)!}$; where $n=2 m ; m \geq 0$ is an integer is a Hermite's Polynomial of degree 2 m .
2) State and prove variation of constant formula for scalar lincar sccond order nonhomogenous differential equation.
3) Answer the following:
4) i) Find $L^{-1}\left(\frac{3 z+7}{z^{2}-2 z-3}\right)$ and ii) Find $L(\operatorname{Cosct})$.
5) Solve $y^{\prime \prime}+y=t ; y=1$ and $y^{\prime}=-2$ at $t=0$ using Laplace Transform.
6) Answer the following:
7) State and Prove Gìronwall's Inequality.
8) Define Legendre's polynomial and compute the polynomial for $1^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }}, 4^{\text {th }}$ and $5^{\text {th }}$ degree.
9) Answer the following:
10) Prove that if \emptyset is a solution of the I.V.P: $y^{\prime}=f(t, y) ; y\left(t_{0}\right)=y_{0}$ if and only if \emptyset is a solution of the Voltera's equation $y(t)=y_{0} \int_{t_{0}}^{t} f(s, y(s)) d s$.
11) Define Convolution. Further show that if $f \in \mathcal{H}$ and $\frac{f(t)}{t} \in \mathcal{H}$ then $L\left(\frac{f(t)}{t}\right)(z)=\int_{z}^{\infty}(L f(w)) d w$ for which $\operatorname{img}(w)$ is bounded and $\operatorname{Re}(w) \rightarrow \infty$.

7) Answer the following:

1) Find $\exp (t A)$ for $y^{\prime}=A y$ on R where $\mathrm{A}=\left[\begin{array}{ll}4 & 2 \\ 3 & 3\end{array}\right]$ on R .
2) i) Classify and locate all the singularities of

$$
t^{2} y^{\prime \prime}+t y^{\prime}+\left(n^{2}-t^{2}\right) y=0 ; n \neq 0
$$

ii) Prove that $\Gamma(z)=(z-1) \Gamma(z-1) ; \forall z \in \mathbb{C}$ and $\operatorname{Re}(z)>1$.
8) Answer the following:

1) Find Fundamental Matrix of $y^{\prime}=A(t) y$ on $(-\infty, \infty)$ where $A(t)=\left[\begin{array}{lll}2 & -3 & 3 \\ 4 & -5 & 3 \\ 4 & -4 & 2\end{array}\right]$ for every $t \in(-\infty, \infty)$
2) Find $\exp (t A) ; \forall t \in(-\infty, \infty)$ for the above given matrix using its solution matrix.

9) Answer the following:

1) i) If $f(t)=t ; 0 \leq t \leq 1$ and $f(t+1)=f(t) ; \forall t \in[0, \infty)$ then find $\mathrm{L}(\mathrm{f})(\mathrm{z})$.
ii) Find $L\left(e^{t} \sin ^{2} t\right)(z)$.
2) Let A be a constant 2×2 complex matrix then prove that there exists a constant 2×2 non- singular matrix T such that $T^{-1} A T$ has the following forms:

$$
\text { a) }\left[\begin{array}{ll}
\lambda & 0 \\
0 & \mu
\end{array}\right] \text { and b) }\left[\begin{array}{cc}
\lambda & 0 \\
0 & \lambda
\end{array}\right]
$$

1) State and Prove Abel's Formula.
2) Prove that if $a_{0}(t), a_{1}(t), a_{2}(t)$ which are analytic att t_{0} and t_{0} is a regular singular point of $a_{0}(t) y^{\prime \prime}+a_{1}(t) y^{\prime}+a_{2}(t) y=0$ then given equation can be written in the form $\left(t-t_{0}\right)^{2} y^{\prime \prime}+\left(t-t_{0}\right) \alpha(t) y^{\prime}+\beta(t) y=0$ for some functions $\alpha(t)$ and $\beta(t)$ which are analytic'at t_{0} and not all $\alpha\left(t_{0}\right), \beta\left(t_{0}\right)$ and $\beta^{\prime}\left(t_{0}\right)$ are zero.

JBG-003-1161004 Seat No.
M. Sc. (Sem. I) (CBCS) Examination
December - 2019
Mathematics : CMT - 1004
(Theory of Ordinary Differential Equation)
Faculty Code : 003Subject Code : 1161004
\qquad
Time: $\mathbf{2} \mathbf{2}$ Hours[Total Marks : 70Instructions : (1) Answer all questions.(2) The figures on the right hand side indicate themarks allotted to the questions.
1 Answer any seven :$7 \times 2=14$
(a) Define Degree of a differential equation and linear differential equation with examples.
(b) Show that $\Gamma z=(z-1) \Gamma(z-1)$.
(c) State Variation of constant formulae for scalar linear second order non-homogenous differential equation.
(d) Define Laplace Transform of a function in \mathscr{H} and Show that it converges absolutely.
(e) Prove that $\exp \left(T^{-1} A T\right)=T^{-1} \exp (A) T$.
(f) State change of scale property and $1^{\text {st }}$ shifting property in Laplace Transform.
(g) Find general solution of $y^{4}+16 y=0$ on \mathbb{R}.
(h) State the First fundamental theorem of calculus.
(i) State the Abel's formula.
(j) Locate and classify the singularities of

$$
t^{2} y^{\prime \prime}+t y^{\prime}+\left(t^{2}-n^{2}\right) y=0
$$

2 Answer any two :
(a) Let A be a constant 2×2 complex matrix then prove that there exists a constant 2×2 non-singular matrix T such that $T^{-1} A T$ has the following forms :
(a) $\left[\begin{array}{ll}\lambda & 0 \\ 0 & \mu\end{array}\right]$ and (b) $\left[\begin{array}{cc}\lambda & 0 \\ 0 & \lambda\end{array}\right]$.
(b) Let A be a constant $\mathrm{n} \times \mathrm{n}$ real matrix. Let $g(t)$ be a continuous $\mathrm{n} \times 1$ matrix on $(-\infty, \infty)$ and $n_{0} \in R^{n}$ then prove that the unique solution of IVP :
$y^{\prime}=A(t) y+g(t) ; y\left(t_{0}\right)=n_{0} \quad$ is
$u(t)=\exp \left(t-t_{0}\right) A \cdot n_{0}+\int_{t_{0}}^{t}(\exp (t-s) A) \cdot g(s) d s ; \forall t \in(-\infty, \infty)$
Further find the solution of the IVP :
$y^{\prime}=\left[\begin{array}{cc}3 & 5 \\ -5 & 3\end{array}\right] y+\binom{e^{-t}}{0} ; y(0)=\binom{0}{1}$.
(c) Find the Eigen values and the corresponding Eigen
vector of matrix $A=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -1 & -6\end{array}\right]$.

3 All are compulsory :
(1) State and prove Variation of constant formulae for scalar linear $1^{\text {st }}$ order non-homogenous differential equation.
(2) Find Fundamental Matrix of $y^{\prime}=A(t) y$ on $(-\infty, \infty)$
where $A(t)=\left[\begin{array}{lll}2 & -3 & 3 \\ 4 & -5 & 3 \\ 4 & -4 & 2\end{array}\right] \forall t \in(-\infty, \infty)$ and Find
$\exp (t A) ; \forall t \in(-\infty, \infty)$.

OR

3 All are compulsory :
(1) Find the solution of the I.V.P :
$y^{\prime}=\left[\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right] y+\binom{0}{e^{-2 t}} ; y(0)=\binom{1}{-1}$ on R.
(2) Prove that Eigen vectors corresponding to the distinct Eigen values of $n * n$ matrix are linearly independent in \mathbb{R}^{n} or \mathbb{C}^{n}.
(1) Justify weather the Legendre's equation $\left(1-t^{2}\right) y^{\prime \prime}-2 t y^{\prime}+n(n+1) y=0$; (where n is constant) has a solution or not.
(2) Prove that if $a_{0}(t), a_{1}(t), a_{2}(t)$ which are analytic at t_{0} and t_{0} is a regular singular point of $a_{0}(t) y^{\prime \prime}+a_{1}(t) y^{\prime}+a_{2}(t) y=0$ then given equation can be written in the form $\left(t-t_{0}\right)^{2} y^{\prime \prime}+\left(t-t_{0}\right) \alpha(t) y^{\prime}+\beta(t) y=0$ for some functions $\alpha(t)$ and $\beta(t)$ which are analytic at t_{0} and not all $\alpha\left(t_{0}\right), \beta\left(t_{0}\right)$ and $\beta^{\prime}\left(t_{0}\right)$ are zero.
(3) Compute the first five terms of the series expansion at zero of the solution of the Legendre's equation $\left[1-(t)^{2}\right] y^{\prime \prime}-2 t y^{\prime}+\alpha(\alpha+1) y=0$, where α is a constant and can you guess the general term of the coefficient of the solution.

5 Answer any two :
(1) (i) Find $L^{-1}\left(\frac{1}{z\left(z^{2}+4\right)^{2}}\right)$ and
(ii) Find $L(\cos c t)$.
(2) (i) Define second shifting theorem and
(ii) Find $L\left(e^{c t}\right)(z)$ using definition of Laplace Transform.
(3) Solve $y^{\prime \prime}-y^{\prime}-2 y=60 e^{t} \sin 2 t$ with $y=0$ and $y^{\prime}=0$ when $t=0$ using Laplace Transform.
(4) State and prove Laplace Transform of Integral.

Seat No. 15008

November/December - 2017
CMT-1004 : Maths
(Theory of Ordinary Differential Equation)
Faculty Code : 003
Subject Code : 1161004

Time: $\mathbf{2} \frac{1}{2}$ Hours
[Total Marks : 70

Instructions : (1) Answer all questions.
(2) The figures on the right hand side indicate the marks allotted to the questions.

1 Answer all questions :

(1) Define Laplace transform of a function in H and show that it converges absolutely.
$\mathscr{V}(2)$ Show that $u(t)=\binom{e^{t}}{e^{t}}$ is a solution of $y^{\prime}=A(t) y$ on $(-\infty, \infty)$ where $A(t)=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ for every $t \in(-\infty, \infty)$.
(3) Define Eigen values and Eigen vectors.
(4) Prove that sint and cost are two linearly independent solution of $y^{\prime \prime}+y=0$ on $(-\infty, \infty)$.
(5) State and prove Cauchy inequality.
(6) Define :
(1) Power series
(2) Regular singular point.
\checkmark (7) Reduce $y^{\prime \prime}+2 y^{\prime}+7 t y=e^{-t ;} ; \quad y(1)=7$ and $y^{\prime}(1)=-2$ to an IVP of system of $1^{\text {st }}$ order linear differential equation.

2 Answer any two :
(1) Let A be a constant 2×2 matrix with eigen values $\alpha \pm \beta$ where $\alpha, \beta \in R$. Prove that there exists a constant 2×2
non-singular real matrix T such that $T^{-1} A T=\left[\begin{array}{cc}\alpha & \beta \\ -\beta & \alpha\end{array}\right]$.
(2) Let A be a constant $n \times n$ real matrix. Let $g(t)$ be a continuous $n \times 1$ matrix on $(-\infty, \infty)$ and $n_{0} \in R^{n}$ then prove that the unique solution of IVP $y^{\prime}=A(t) y+g(t)$: $y\left(t_{0}\right)=n_{0}$ is : $u(t)=\exp \left(t-t_{0}\right) A \cdot n_{0}$

$$
+\int_{t_{0}}^{t}(\exp (t-s) A) \cdot g(s) d s ; \forall t \in(-\infty, \infty)
$$

Further find the solution of the IVP :

$$
y^{\prime}=\left[\begin{array}{cc}
3 & 5 \\
-5 & 3
\end{array}\right] y+\binom{e^{-t}}{0} ; y(0)=\binom{0}{1} .
$$

(3) Find fundamental matrix of $y^{2}=A(1) y$ on $(-\infty, \infty)$
where $A(t)=\left[\begin{array}{lll}2 & -3 & 3 \\ 4 & -5 & 3 \\ 4 & -4 & 2\end{array}\right]$ for every $t \in(-\infty, \infty)$ and find $\exp (t A) ; \forall t \in(-\infty, \infty)$

3 All are compulsory :
(1) Prove that for a continuous matrix $A(t)$ of order $n * n$ on I. The solution matrix $\varnothing(t)$ of $y^{\prime \prime}=A(t)$ on I is a fundamental matrix if and only if $\operatorname{det}(\varnothing(t)) \neq 0 ; \forall t \in I$. Further if $\operatorname{det}\left(\varnothing\left(t_{0}\right)\right) \neq 0$; for some $t_{0} \in I$ then $\operatorname{det}(\varnothing(t)) \neq 0 ; \forall t \in I$.
(2) Find the general solution of $y^{\prime \prime}-6 y^{\prime}+9 y=e^{t}$ on R.

> OR

3 All are compulsory :

(1) Find the solution of the I.V.P : $y^{\prime}=\left[\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right] y+\binom{0}{e^{2 l}}$;

$$
y(0)=\binom{1}{-1} \text { on } R .
$$

(2) State and prove variation of constant formulae for scalar linear $2^{\text {nd }}$ order non-homogenous differential equation.

4 Answer any two :

$$
2 \times 7=14
$$

(1) Prove that the solution of the I.V.P. $y^{\prime \prime}-2 t y^{\prime}+2 n y=0$; $y^{\prime}(0)=0$ and $y(0)=\frac{2(-1)^{m}(2 m)!}{(m)!} ;$ where $n=2 m ;$ $m \geq 0$ is an integer is a Hermite's polynomial of degree 2 m .
(2) State and prove the Existence and Uniqueness theorem for the firstworder I.V.P. of the form $y^{\prime}=f(t, y) ; y(0)=y_{0}$.
\checkmark (3) (a) Classify and locate all the singularities of

$$
t^{4}\left(1-t^{2}\right)^{3} y^{\prime \prime \prime}+5 t^{5}(1+t) y^{\prime \prime}-2 t^{2}\left(1-t^{2}\right) y^{\prime}+y=0
$$

(b) Prove that if \varnothing is a solution of the I.V.P. :

$$
y^{\prime}=f(t, y) ; y\left(t_{0}\right)=y_{0} \text { if and only if } \varnothing \text { is a }
$$ solution of the Voltera's equation

$$
y(t)=y_{0} \int_{t_{0}}^{\prime} f(s, y(s)) d s
$$

5 Answer any two :

$$
2 \times 7=14
$$

\checkmark (1) Solve $y^{\prime \prime}+9 y=\cos t ; y(0)=1$ and $y\left(\frac{\pi}{2}\right)=-1$ using
Laplace transform.
(2) Find $L\left(t^{n} e^{c t}\right)(z)$.

(3) Define convolution. Further show that if $f, g \in H$ then $L(f * g) \in H$.
$\checkmark(4) \cup(a) \quad L^{-1}\left(\frac{3 z+7}{z^{2}-2 z-3}\right)$.
(b) If $f(t)=t ; 0 \leq t \leq 1$ and $f(t+1)=f(t)$; $\forall t \in[0, \infty)$ then find $L(f)(z)$.

Sarasara Vaishali J
||

> MCA-003-1161004

Seal No. \qquad
M. Sc. (CBCS) (Sem. I) Examination

$$
\text { December }-\frac{2016}{\text { Mathematics : }}
$$

[Theory of Ordinary Differential Equations]
(New Course)

Faculty Code : 003
Subject Code : 1161004

Time $2 \frac{1}{2}$ Hours)
[Total Marks $: 70$

Instructions
(1) Answer all questions.
(2) Each question carries 14 marks.
(3) The figures on the right indicate marks alloted to the question.

1 Answer any seven questions :

(i) Solve $y^{\prime}+a y=0$, where " a " is a constant.
(ii) True or false? Justify.

If $\phi(t)$ is a fundamental matrix of $Y^{\prime}=A(t) Y$ on I and C is a non-singular $n \times n$ matrix then $C \phi(t)$ is a fundamental matrix of $Y:=A(t) \ddot{Y}$ on I
(ii) the the column of a continuous $n \times n$ matrix $A(t)$ on I are linearly independent then is ti tue that dot $A(t) \neq 0$, I.
Justify.
MCAOO3 1161004
$y^{\prime}+x y=9$
$y=-4 y$

Contd:
(6). If $a_{0}, a_{1}, a_{2}: 1 \rightarrow \mathbb{R}$ are continuous, $a_{0}(t) \neq 0, \forall t \in I, t_{0} \in I$ and ϕ_{1}, ϕ_{2} are solutions of $a_{0}(t) y^{\prime \prime}+a_{1}(t) y^{\prime}+a_{2}(t) y=0$ then prove that $w\left(\phi_{1}, \phi_{2}\right)(t)=w\left(\phi_{1}, \phi_{2}\right)\left(t_{0}\right) \exp \left(-\int_{t_{0}}^{t} \frac{a_{1}(s)}{a_{0}(s)} d s\right), \forall t \in I$.
(v) Find two linearly independent solutions of $y^{\prime \prime}-8 y^{\prime}+16 y=0$ on \mathbb{R}.
(vi) If A is a constant $n \times n$ matrix then prove that $\exp (t A)$ is a fundamental matrix of $Y^{\prime}=A Y$ on \mathbb{R}.
(vii) Define Legendre polynomial of degree n, where $\dot{n} \in\{0,1,2, \ldots \ldots\}$. Is $p(t)=-\frac{3}{2}\left(t+\frac{10 t^{3}}{3!}\right)$ a Legendre polynomial of degree 3 ? Justify.
(viii) Find the indicial equation of $2 t y^{\prime \prime}+y^{\prime}+t y=0$.

Define Gamma function and state, without proof, its recursion formula.
$\checkmark\left(x^{x}\right)$ Find $L(\sinh c t)$, where $c \in \mathbb{C}$.

2 Answer any two questions :

If $p, q: I \rightarrow \mathbb{R}$ are continuous, $t_{0} \in I, y_{0} \in \mathbb{R}$ then find the unique solution of the $I_{v p}: y^{\prime}+p(t) y=q(t), y\left(t_{0}\right)=y_{0}$.

If $A(t)$ is a continuous $n \times n$ matrix on then prove that a solution matrix $\phi(t)$ of Y = $A(t)$ Y 1 is a fundamental matrix inf get $\phi(t) \neq 0 ; \forall t \in I$

State and prove variation of constant formula for a non homogeneous system of first order differential equations.
(a) Prove that $-\cos t \log |\sec t+\tan t|$ is a solution of $y^{\prime \prime}+y=\tan t \quad 7$ on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.
(b) Find a fundamental matrix of $Y^{\prime}=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) Y$ on $(-\infty, \infty)$.

OR
(c) Define eigenvalues and eigen vectors of an $n \times n$ matrix. If A is a constant real or complex $n \times n$ matrix and $v_{1}, v_{2}, \ldots \ldots . ., v_{n}$ are linearly independent eigen-vectors corresponding to the eigen-values $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ of A then prove that $\phi(t)=\left[e^{\lambda t} v_{1}, e^{\lambda} 2^{t} v_{2}, \ldots, e^{\lambda} n^{t} v_{n}\right]$ is a fundamental matrix of $Y^{\prime}=A Y$ on $(-\infty, \infty)$.
(d) Find $\exp (t A), \forall t \in \mathbb{R}$, where $A=\left(\begin{array}{cc}3 & 5 \\ -5 & 3\end{array}\right)$.

4 Answer any two questions :
(a) If $\alpha=2 m+1$, where $m \geq 0$ is an integer then prove that the solution of the
$I_{v p}:\left(1-t^{2}\right) y^{\prime \prime}-2 t y^{\prime}+\alpha(\alpha+1) y=0, y(0)=0, y^{\prime}(0)=1$ is a
polynomial of degree $2 m+1$.
(b) Solve the $I_{v p}: y^{\prime \prime}-2 t y^{\prime}+2 n y=0, n=2 m$, an even integer,

$$
x(0)=\frac{(-1)^{m}(2 m)!}{m!}, y^{\prime}(0)=0
$$

\therefore (c) If $(t)=t^{2}$ (f $t=0$
(0 a 0
then prove that the $I_{i p} y=f(t)$, $y(0)=0$ has no atiaytic solution at 0

5 Answer any two questions :

$$
2 \times 7=14
$$

(a) Define successive approximations to a solution of the integral
 approximations $\phi_{n}, n=0,1,2,3$ to a solution of $y^{\prime}=\cos \dot{y}, y(0)=0$.
State and prove Gronwall's inequality. Find $L(\cosh c i)$, where $c \in \mathscr{Z}$.
(d) Solve $y^{\prime \prime}+\dot{y}=2 e^{t}, y(0)=2=y^{\prime}(0)$ using Laplace transform.

: $-(0)$

BBO-003-016104 Seat No. -
M. Sc. (Sem. I) (CBCS) Examination

December - 2015
CMT-1004 : Mathematics
(Theory of Ordinary Differential Equations)
Faculty Code : 003
Subject Code : 016104
Time : 2.30 Hours]
[Total Marks : 70

Instructions :
(1) Answer all questions. Each question carries 14 marks.
(2) The figures on the right indicate marks alloted to the question.

1 Choose the correct answer :

$$
2 \times 7 x=14
$$

(i) The solution of the $J_{v p}: y^{1}=-y, y(0)=2$ is \qquad $\int \frac{d j}{d t} x y=c$
(A) $2 e^{-2 t}$
C) (B) $2 e^{-t}$
(C) $e^{-2 t}$
(D) $2 e^{2 t}$
(2) If ϕ_{1}, ϕ_{2} are solutions of $z^{\prime} y^{*}+\cos t y^{\prime}+\sin t y=0$ on I the wronskian $w\left(\phi_{1}, \phi_{2}\right)$ satisfies the differential equation $w^{\prime}=w$ on I
(A) $\frac{e^{t}}{\cos t}$
(B) $\frac{e^{t}}{\sin t}$
$\left(\Phi_{1} \phi_{2}\right)$
(C) $\frac{\cos t}{e^{t}}$
(D) $\frac{-\cos t}{e^{t}}$

$$
\begin{aligned}
& 109 y=-t \\
& y=c t^{t} \\
& 10 g y=-t+c \\
& e^{y}=e^{t}
\end{aligned}
$$

(3) A fundamental matrix of $Y^{\prime}=\left(\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right) Y$ on \mathbb{R} is \qquad
(A) $\left(\begin{array}{cc}2 e^{2 t} & t \\ 0 & 3 e^{3 t}\end{array}\right)$
(B) $\left(\begin{array}{cc}2 e^{t} & 0 \\ 0 & 3 e^{t}\end{array}\right)$
(C) $\left(\begin{array}{cc}2 e^{2 t} & t \\ 0 & 3 e^{3 t}\end{array}\right)$
(D) $\left(\begin{array}{cc}e^{-2 t} & 0 \\ 0 & e^{-3 t}\end{array}\right)$
(4) If A is a constant $n \times n$ matrix and $\phi(t)$ is a solution of $Y^{\prime}=A(t) Y$ on \mathbb{R} then \exists a unique $c \in \mathbb{R}^{n}$.s.t: \qquad $\forall t \in \mathbb{R}$
(A) $\phi(t)=C \exp A(t)$
(B) $\phi(t)=\exp A(t) \cdot C$
(C) $\exp A(t)=C \phi(t)$
(D) $\exp A(t)=\phi(t) \cdot C$
(5) \qquad are two linearly independent solutions of $y^{\prime \prime}+y=0$
(A) $\widehat{e^{i t}}, e^{-i t}$
(B) $e^{i t}, t e^{i t}$
(C) $e^{-i t}, t e^{-i t}$
(D) $e^{t}, t e^{t}$
(6) The indicial equation of $y^{\prime \prime}+\alpha(t) y^{\prime}+\beta(t) y=0$, where

$$
\begin{aligned}
& \alpha(t)=\sum_{k=0}^{\infty} \alpha_{k} t^{k}, \beta(t)=\sum_{k=0}^{\infty} \beta_{k} k^{k} \text { in }|t|<\dot{r}, \text { is } \\
& \begin{array}{ll}
\text { (A) } z^{2}+\alpha_{0} z+\beta_{0} & \text { (B) } z(z+1)^{\prime}+\alpha_{0} z+\beta_{0} \\
\text { (C) } z^{2}-z+\alpha_{0} z+\beta_{0} & \text { (D) } z(z-1)-\alpha_{0} z+\beta_{0}
\end{array}
\end{aligned}
$$

(77) 0 is a \qquad point of $t^{4}\left(1-t^{2}\right) y^{(3)}+s t^{5}+(1+t) y^{\prime \prime}$
$-2 t^{2}\left(1-t^{2}\right) y^{\prime}+y=0$
(A) regular point
(B) singulár point
(C) regular singular point
(D) irregular singular point [Contd...
(8) $h f(a j)(z)=$ \qquad $\forall z \in \operatorname{dom} h f, \forall f \in \forall, a>0$
(A) $h f\left(\frac{z}{a}\right)$
(B) $\frac{1}{a} h f\left(\frac{z}{a}\right)$.
(C) $\frac{1}{z} h f(a z)$
(D) $\frac{1}{z} h f\left(\frac{z}{a}\right)$
(9) The legendre polynomial of degree 2 is \qquad
(A) $t^{2}+1$
(B) $t^{2}-t$
(C) $t^{2}+2 t$
(D) None of (a), (b), (c)
$\int(10)$ For $f, g \in \mathcal{F},(f * g)(x)=$ \qquad , $\forall x \in[0, \infty)$
(A) $\int_{0}^{\infty} f(x-y) g(y) d y$
$L^{(B)}-\int_{0}^{x} f(x-y) g(y) d y$
(C) $\int_{0}^{x} f(y) g(y) d y$
(D) $\int_{0}^{\infty} f(y) g(x-y) d y$
(a) Solve the $I_{v p}: \begin{aligned} & y_{1}^{\prime}=-y_{1} \\ & y_{2}^{\prime}=y_{1}+y_{2}\end{aligned},\binom{y_{1}(0)}{y_{2}(0)}=\binom{2}{1}$.
(b) Find the solution of the $I_{v p}$:

$$
Y^{\prime}=\left(\begin{array}{ll}
2 & 1 \\
0 & 2
\end{array}\right) Y+\binom{0}{e^{2 t}}, Y(0)=\binom{1}{-1}
$$

(c) Find a particular solution of $y^{\prime \prime}+y=\sec t$ on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

3 (a) Find a fundamental matrix of $Y^{\prime}=\left(\begin{array}{ll}d_{1} & 0 \\ 0 & d_{2}\end{array}\right) Y$ on \mathbb{R}.
(b) If $A=\left(\begin{array}{ll}1 & 2 \\ 4 & 3\end{array}\right)$, find $\exp (t A), \forall t \in(-\infty, \infty)$
(c) Prove that the eigen vectors corresponding to distinct eigcil. values of an $n \times n$ matrix are linearly independent.
(d) For $\dot{A}=\left(\begin{array}{cc}3 & 5 \\ -5 & 3\end{array}\right)$, find $\exp (t A), \forall t \in(-\infty, \infty)$.

4 Answer any two:
(a) Find the solution of the $I_{v p}: y^{\prime \prime}-t y=0, y(0)=1, y^{1}(0)=0$.
(b). If p is not zero or a positive integer then prove that $J_{p}(t)=\left|\frac{t}{2}\right|^{p} \sum_{k=1}^{\infty} \frac{(-1)^{k}}{k!\Gamma(p+k+l)}\left(\frac{t}{2}\right)^{2 k}$ is a solution of $t^{2} y^{\prime \prime}+t y^{\prime}+\left(t^{2}-p^{2}\right) y=0$ in any excluded nbhd of 0.
(c) State, without proof, Gronwall's inequality. Using Gronwall's inequality, prove that the $I_{v p}: y^{\prime}=f(t, y), y\left(t_{0}\right)=y_{0}$ has a unique solution.

5 Answer any two :
$2 \times 7=14$
(a) If $f \in \mathcal{F}$ and $h f=F$ then prove that

$$
h^{-1}\left(F^{n}(z)\right)(t)=(-1)^{n} t^{n} f(t), \forall t \in[0, \infty), \forall n=1,2, \ldots \ldots .
$$

(b) Find $h^{-1}\left(\frac{3 z+7}{z^{2}-2 z-3}\right)$.
(c). Solve $y^{\prime \prime}+y=t, y=1, y^{\prime}=-2$ when $t=0$ using Laplace transform.
(d) If $f(t)=e^{-\frac{1}{t^{2}}}, \forall_{0} \neq t \in \mathbb{R}$ and $f(0)=0$ then prove that the $I_{\nu p} y^{\prime}=f(t), y(0)=0$ has no analytic solution.

003-016104
MiSc. (Maths) (CBCS) Sem.-I Examination
December-2014
CMT-1004 : Maths
(Theory of Ordinary Differential Equations) (Set-1)

Faculty Code : 003
Subject Code : 016104

Time: $21 / 2$ Hoers $\}$
[Total Marks : 70

Instructions: (i) Answer all questions.
(2) The figures on the right indicate the marks allotted to the question.

1. Answer any seven questions:
(1) 'A matrix $S^{(t)}$ is a fundamental matrix of $y^{\prime}=A(t) y$ on I if
(a), $\quad \phi(t)$ is a solution matrix of $y^{\prime}=A(t) y$ on I
(b) " "di) is a solution matrix and $\operatorname{det} \phi\left(t_{0}\right) \neq 0$ for some $t_{0} \in I$.
(c) the columns of $\phi(t)$ are linearly independent on I
(d) Let $\phi(t) \neq 0, \forall t \in I$
(2) $y^{\prime \prime}-\cos t y^{\prime}+e^{t} y=\sin t, y(0)=1, y^{\prime}(0)=0$ is equivalent to
(a) $y^{\prime}=\left(\begin{array}{cc}0 & 1 \\ -e^{t} & -\cos t\end{array}\right) y, y(0)=\binom{1}{0}$
(b) $y^{\prime}=\left(\begin{array}{cc}0 & 1 \\ -\mathrm{e}^{t} & \cos { }^{\prime} t\end{array}\right) y, y(0)=\binom{1}{0}$
(c) $y^{\prime}=\left(\begin{array}{cc}0 & 1 \\ e^{t} & \cos t\end{array}\right) y, y(0)=\binom{0}{1}$
(d) $\cdots=\left(\begin{array}{cc}0 & 1 \\ -e_{i}^{t} & -\cos \mathrm{f}\end{array}\right) y_{z} y(0)=\binom{0}{-1}$
(3). If v_{1}, v_{2} are eigen vectors corresponding to distinct eigen values, λ_{1}, λ_{2} of a constant 2×2 matrix A then a fundamental matrix of $y^{\prime}=$ Ny on $(-\infty, \infty)$ is

(4) The Wronskian of two differentiable functions ϕ_{1}, ϕ_{2} is defined as \qquad .
(a) $\phi_{1}^{\prime} \phi_{2}^{\prime}-\phi_{1} \phi_{2}$
(b) $\phi_{1} \phi_{1}^{\prime}-\phi_{2} \phi_{2}^{\prime}$
(c) $\phi_{1} \phi_{2}-\phi_{1} \phi_{2}$
(d) $\phi_{1} \phi_{2}^{\prime}-\phi_{1}^{\prime} \phi_{2}$
(5) The indicial equation of $t^{2} y^{\prime \prime}+t y^{\prime}-t y=0$ is \qquad .
(3) $z(z-1)=0$
(b) $z(z+1)=0$
(c) $(z+1)(z-1)=0$
(d) $(z-1)^{2}=0$
(6) Two linearly independent solutions of $y^{\prime \prime}+y^{\prime}-2 y=0$ on $(-\infty, \infty)$ are \qquad .
(a) $\mathrm{e}^{2 \mathrm{t}}, \mathrm{te}^{2 \mathrm{t}}$
(b) $e^{t}, e^{2 t}$
(c) $e^{t}, e^{-2 t}$
(d) $e^{t}, t c^{t}$
(7) $L\left(t^{n} e^{c t}\right)(z)=$ \qquad
(a) $\frac{n!}{(z-c)^{n+1}}$
(b) $\frac{n!}{(z-c)^{n}}$
(c) $\frac{(n+1)!}{(z-c)^{n}}$
(d) $\frac{(n+1)!}{(z-c)^{n+1}}$

(8) (L f $(z)=$ \qquad

$$
=\phi_{1} \phi_{2}^{\prime}-\phi_{1}^{\prime} \phi_{2}
$$

(2) $\int_{0}^{\infty} e^{-z t} f(t) d t$
(b) $\int_{0}^{\infty} e^{z t} f(t) d t$
(c) $\int_{-\infty}^{\infty} e^{-2 t} f(t) d t$
(d) $\int_{-\infty}^{\infty} e^{z_{1}} f(t) d t$
(9) \qquad has infinitely many solutions
(a) $y^{\prime}=A(t) y, y\left(t_{0}\right)=\eta$
(b) $y_{1}^{\prime}=y_{2}^{\prime}, y_{1}(0)=1, y_{2}(0)=0$
(c) $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0, y(0)=1 . y^{\prime}(0)=0$
(d) $y+p(t) y=q(t), y\left(t_{0}\right)=y_{0}$
(10) A fundamental matrix of $y^{\prime}=\left(\begin{array}{ll}\lambda & 1 \\ 0 & \lambda\end{array}\right)$ in $(-\infty, \infty)$ is \qquad

(a) $\left(\begin{array}{cc}e^{\lambda t} & t \\ 0 & e^{\lambda t}\end{array}\right)$
(b) $\left(\begin{array}{cc}e^{\lambda t} & t e^{\lambda t} \\ 0 & e^{\lambda s}\end{array}\right)$
(c) $\left(\begin{array}{cc}e^{t} & t e^{\lambda_{t}} \\ 0 & e^{t}\end{array}\right)$
(d) $\left(\begin{array}{cc}t e^{\lambda t} & e^{t} \\ 0 & 1 \\ e^{\lambda t}\end{array}\right)$

2. Answer uny two questions:
(3) If $p, q: 1 \longrightarrow \mathbb{R}$ are continuous, $t_{0} \in I$ and $y_{0} \in \mathbb{R}$, solve the Ivp : $y^{\prime}+p(t) y=$ $\forall \quad q(t), y\left(t_{0}\right)=y_{0}$
(b) If $p_{1}, p_{2}, \ldots . p_{n}$ are continuous on 1 then prove that $y^{n}+p_{1}(t) y^{n-1}+\ldots \ldots$. $P_{n}(t) y=0$ has n linearly independent solutions and for every solution ψ of this equation on I, \exists constants $C_{1}, C_{2}, \ldots, C_{n}$ s.t. $\psi(t)=C_{1} \psi_{1}(t)+C_{2} \Psi_{2}(t)+\ldots .+$ $C_{n} \psi_{n}(t), \forall t \in I$.
(c) State and prove variation of constants formula for a linear system of first order equations.
3. (a) Define exponential of an $n \times 1$ rotrix. Find $\exp \left(\begin{array}{cc}\lambda & 1 \\ 0 & \lambda\end{array}\right)^{t}$
©(b) Find a fundamental matrix of $y^{\prime}=\left(\begin{array}{ccc}-2 & i & 0 \\ 0 & -2 & 1 \\ -0^{\circ} & 0 & -2\end{array}\right)$ y on $(-\infty, \infty)$.

$$
\therefore \quad \therefore \quad \mathbf{O R}
$$

\therefore (c) Find the eigen values and conespondifig eipen vectors of $\left(\begin{array}{ll}4 & 2 \\ 3 & 3\end{array}\right)$ and find A fundamental matrix of $y^{\prime}=\left(\begin{array}{ll}4 & 2 \\ 3 & 3\end{array}\right) y$.
(d) Giveq $\mu, 2 \times 2$ real matrix \dot{A} with complex conjugate eigen values $\alpha \pm i \beta$, prove that \exists a real constant non-singular maotrix T s.t. $T^{-1} A^{T}=\left(\begin{array}{cc}\alpha & \beta \\ -\beta & \alpha\end{array}\right)$.
4. Answer any' two questions:
(a) If $\alpha=2 \mathrm{~m}$ where m is non-negative integer then prove that the solution of the $\operatorname{lvp}=\left(1-t^{2}\right) y^{\prime \prime}-21 y^{\prime}+\alpha(a+1) g=0, y(0)=1, y^{\prime}(0)=0$ is a potynomial of
degree $2 \mathrm{~m} .-3$
fb) Deffine singular points, regular singular points and regular points of $a_{0}(t) y^{t}+$
$\therefore \because \underbrace{}_{a}$ $a_{1}(t) y^{n-1}+\ldots \ldots+a_{n-1}(t) y^{\prime}+a_{n}(t) y=0$. Locate and elassify the singular points of $(t-1)^{3} y^{\prime \prime}+2(t-1)^{2} y^{\prime}-7 t y=0$
. (t) Prove that $t y^{\prime \prime}+t y^{\prime}-y=0$ has only one solution of the form $|t|=\sum_{k=0}^{\infty} c_{k} t^{t}$,
003-016104

$$
y(t)=y_{0} e^{-p(t)} e^{-p(t)} \int_{1}^{t} e^{p(s)} q(s) \cdot d s \text {. }
$$

P.T.O.
5. Answer any two questions:

- (a) Solve the IVP $=y^{\prime}=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) y+\binom{e^{-1}}{0}, y(0)=\binom{-1}{1}$.
fo) State and prove first shifting theorem. Deduce that $L\left(t^{n} e^{c t}\right)(z)=\frac{n!}{(z-c)^{n+1}}, \forall n$ $=0,1,2, \ldots \ldots, c \in \mathbb{R}$.
0 (e). Prove that $L(\sinh \operatorname{ct})(z)-\frac{c}{z^{2}-c^{2}}, \nabla z z \in 4, R e z>|C|, \forall c \in \mathbb{R}$.

$$
\begin{aligned}
& u(t)=\binom{-\sin t}{\cos x} \quad\binom{-\cos t}{\sin t} \\
& u^{\prime}(t)=\left(\begin{array}{cc}
1 & 1 \\
0 & 1
\end{array}\right) \cdot\binom{-\sin t}{\cos t} u(t)=\binom{\sin t}{\cos t}
\end{aligned}
$$

$$
\text { R. } \quad \begin{aligned}
\sin ^{d}= & \cos t \\
\cos ^{x}= & -\sin ^{1+\sin t} \\
& 0 \text { (cost }
\end{aligned}
$$

$$
\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 9 \\
0 & 0 & 0
\end{array}\right) \cdot\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 9 \\
0 & 0 & 0 \\
0
\end{array}\right) n^{\prime}(t)=\binom{\cos t}{-\sin t}
$$

(d) Solve $y^{\prime \prime}-y=0, y(0)=0, y^{\prime}(0)=1$ using Laplace transform.

$$
y^{\prime}(x)=\binom{+t \cdot e^{t}}{e^{t}}
$$

003-016104
$-e^{-t}(-1) e^{-t}$

$$
=\binom{-e^{-t}+e^{t}}{0+e^{t}}
$$

003 -016104

M.Sc. (CDCS) Sem. 1 Exambation

November,2013
Mathematles
CMT-1004 : Theory of Ordnary Differentisi Equations
Faculty Code : 003
Subject Code 1016104
Time: 2/2 Hours]

- (TokndMarks : 70

1. Answer any seven question : $7 \times 2=14$
(11) The order of $y^{\prime}-t^{4} y^{\prime \prime}+0-y^{\prime \prime \prime}+7 t y-6=0$ is
(a)
(b) 1
-(c) 2
(d) 4.
(2) The solution of the Ivp $y^{\prime}=\frac{y}{2}, y^{\prime}\left(0, \frac{1}{2} \frac{1}{2}\right.$ is \qquad .
(a) $\frac{1}{2} t+1$
(b) $\frac{\dot{1}}{2} e^{c}$
?
(b) $\cdot 2^{e^{c}}$
(c) $2 \mathrm{e}^{1}$
(d) $\frac{1}{2} e^{2 t}$
(3) The solution of that $\left.14 \begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right) y, y(0)=\binom{1}{-1}$ is
$\operatorname{va}\binom{c^{2 t}}{e^{-t}}$
(b) $\binom{e^{-21}}{c^{1}}$
(c) $\binom{\mathrm{e}^{1}}{-\mathrm{e}^{21}}$
(d) $\binom{-e^{t}}{e^{2 t}}$
 $\left.\begin{array}{l}\text { is a fundame } \\ 2 t \sin 21 \\ 21 \\ \cos 21\end{array}\right)$
(b) $e^{2}\left(\begin{array}{cc}\cos t & \sin t \\ -\sin t \cos t\end{array}\right)$
\checkmark (f) $e^{(}\left(\begin{array}{cc}\cos 2 t & \sin 2 t \\ -\sin 2 t & \cos 2 t\end{array}\right)$
(5)

on $(-\infty, \infty)$

$f(x)$ is a fundamental matrix of $y^{\prime}=A^{\prime}(t)$ y on $(-\infty, \infty)$ then \exists a non-singular $n \times n$ matrix C s.t. $\forall t \in(-\infty, \infty)$.
(b) $\exp A t=C \phi(t)$
(a) $\exp A t=\phi(t) C$
(d) $\exp A t=\phi(t)+C$
(a) $\phi(t)=C \exp A t$
(77) $\exp \left(\begin{array}{ll}3 & 1 \\ 0 & 3\end{array}\right) t=$

的 C e $\left(\begin{array}{ll}1 & 3 t \\ 0 & 1\end{array}\right)$
(c) $\left(\begin{array}{cc}\cos t & \sin 3 t \\ -\sin 3 t & \cos t\end{array}\right)$ is the Legendre porlynomial of degree 3
(88).
(a) $\mathrm{t}^{3}+1$
(b) 6^{3}
(c) $\frac{3}{2}\left(t^{2}-\frac{10 t^{3}}{6}\right)(6) /-\frac{3}{2}\left(t-\frac{10 t^{3}}{6}\right)$
(9)) $L(\cosh c t)(z) S$
(a) $\frac{2}{z^{2}+c^{2}}$
(b) $\frac{z}{z^{2}-c^{2}}$
(c) $\frac{\dot{c}}{z^{2}+c^{2}}$
(d) $\frac{c}{z^{2}-c^{2}}$
(10) $L(f i)(z)=$ \qquad
(a) $z \mathrm{~L}(\mathrm{i}(\mathrm{z})$
(b) $L(f)(3)-f(0)$
(c) $z^{2} \mathrm{Lf}(\mathrm{z})$
(d) $z L(f)(z)-f(0)$
2. Answer any two questions:
(a) Statt and prove the necessary and sufficient condition for a solation coiv . marrix of $y^{\prime}=$ A (ti)y on I to be a fundamental matrix.

(c) State and prove variation of constant formula for the solution of the Ivp: $Y^{\prime}=A(t) y+g(t), y\left(t_{0}\right)=0 \mathrm{~cm}$ an interval contaïning t_{0}.
3. (a) If A is a constant $n \times n$ matrix and $v_{1}, v_{2}, \ldots, v_{n}$ are linearly ${ }^{2}$ independent eigen vectors corresponding to the eigen values $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ of A then prove that $\phi(t)=\left[\exp \left(\lambda_{1} t\right)\right)_{1}, \exp \left(\lambda_{2} t\right) v_{2}, \ldots . .$, $\left.\exp \left(\lambda_{n} t\right) v_{n}\right]$ is a fundamental matrix of $y^{\prime}=A x, \theta_{n}(-\infty, \infty)$.
\therefore (b) Find a fundamental matrix of $\left.\left.y^{\prime}=\binom{3}{-5}\right)^{\prime}\right)^{\prime}$ on $(-\infty, \infty)$.
OR
2. (6) Find a fundamental matrix of $y^{\prime}=\left(\begin{array}{ccc}-2 & 1 & 0 \\ 0 & -2 & 1 \\ 0 & 0 & -2\end{array}\right)$ on $(-\infty, \infty)$.
(d) Find the gefrieral saltrion of $y^{\prime \prime}-5 y^{\prime}+9 y=e^{\prime}$.
4. Answer any tha
$2 \times 7=14$
(a) If α a m where m is a non-negative integer then prove that $\left(1-t^{2}\right)$ $y^{\prime \prime 2}-2 t y^{\prime}+\alpha(\alpha+1) y=0$ has a power series solution in $|t|<1$.
(ㄴ) Solve the Ivp : $y^{\prime \prime}-2$ ty' $+2 n y=0$, where $n=2 m+1, m$ is a nonnegative integer, $y(0)=0, y^{\prime}(0)=0,=\frac{2(-1)^{m}(2 m+1)!}{m!}$.
(c) If $f \in \exists$, and $L f=F$ then prove that

$$
L^{-l}\left(F^{n}(z)\right)(t)=(-1)^{n} ; n^{n} f(t), \forall t \in(0, \infty), \forall n=1,2, \ldots .
$$

5. Answer any two questions:
(ai) Define Wronskian $w\left(f_{4}, f_{2}\right)$ of two times different functions f_{1}, f_{2} on I. If p, q are continuous functions on! then prove that two solutions ψ_{1}, ψ_{2} of $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$ on T are linearly' $y^{\text {independent ff }}$ $w\left(\psi_{1}, \psi_{2}\right)(t) \neq 0, \forall t \in I$.
(b) State without proof. Gronwal's inequality. If $R=\left\{(t, y) \in \in \mathbb{R}^{2} \mid \underline{I t}-t_{n}\right\}$ $\left.<a, l y-y_{0} i<b\right\}$ is a rectangle with center at $\left(b_{0}, y_{0}\right), f r i n \longrightarrow \mathbb{R}$ is
continuous st. f is bad, $\frac{\partial f}{\partial y}$ exists, continuous and bd on R then prove that the vp : $y^{\prime}=f(t, y), y\left(t_{0}\right)=y_{0}$ fats unique solution.
(0)) Find $L\left(e^{l} \sin ^{2} t\right)$.
(d) Solve $y^{\prime \prime}+9 y=\cos 2 t, y(0) x ; y\left(\frac{\pi}{2}\right)=-1$ using Laplace transform.

Q:1 Aiswer my Seven questions.
(i) The order of $y^{1}-y^{\prime}+r^{5} y^{\prime \prime}+t^{4} y^{\text {II' }}=0$ is (a) 5 (b) 4 (c) 3 (d) 2
(ii) The solution of the IVP $=y^{\prime \prime}=y, y(0)=1$ is (a) :p' (b) $!+1$ (c) $e^{\prime 21}$ (d) cost
(iii) If $A^{\prime}(1)$ is a continuous 2×2 matrix on I then $y^{\prime}=\dot{A}(t) y$ has
(a) infinitely many solutions (b) unique solution (c) rio solution
(d) finiticly many solutions.
(iv) if A is a constant nxn Matrix and $\varphi(t)$ is a fundaniental matrix of y ' Ay on $(-\infty, \infty)$ hen ja non-singular matrix $C j-t \quad t \in(-\infty, \infty)$
 (1) $\mathrm{C}^{(1)}=\exp A T+c$
v) hass no analytic solution of 0 (n) $y^{\prime \prime}+t . y^{1^{1}}+c^{2} y=0$
(b) $y^{\prime}=f(t), y^{\prime}(0)=0$: where $f(t)=\dot{e} \frac{1}{i^{2}} \quad$ if $t=0$ and $f(t)=0$ if $t=0$
(c) $y^{\prime \prime}+y^{\prime}+y^{\prime}=0$
(d) $y^{11}+t^{2} y+c y=0$.

1

vi) If $\dot{A}=\binom{35}{-53}$ then $\exp A t=$
$\underset{-7}{-(a)} e^{2:}\left(\begin{array}{l|l}\cos 5 t & \sin 5 t \\ -\sin 5 t & -i, 5 t\end{array}\right)$

| \because | |
| :--- | :--- | :---: |
| (c) | $e^{j i}\left(\begin{array}{c\|c}\cos S! & \sin s i \\ -\sin 5! & -\cos 5!\end{array}\right) ; ~$ |

(d) $e^{51}\left(\begin{array}{ll}\cos 51 & \sin 5 t \\ -5 \sin 5 t & \cos 51\end{array}\right)$
vii) The indicial equaption of $i^{2} y^{\prime \prime}+\alpha(t) y^{\prime}+\underline{B}(t) y^{\prime}=0$ s
(a) $3(3 \cdot 1)+\alpha 13+\beta_{0}=0$
(b) $32+3+1=0$
(c) $z_{2}++\alpha 31+\beta 0=1$
(d) $3(3-1)+3+\beta=0$
viii) An nxn Matrix has \qquad (a) ndistirict Eigen vaitiers
(h) ${ }^{2}$ vat most n distinct Eigen values (c) n linearly ndependen! Eigen vectors: . (d) no Eigen values.
ix) $\lambda\left(e^{c \pi} f(t)(3)=\right.$ \qquad (a) $f(3-c)$
(b) $(i, f)(j-\infty)$
(c) $(\lambda, f)(3)-c$
x) $\left(\lambda f^{\text {(ii }}\right)(3)=$ \qquad (a) $3 \lambda f(f) \cdot 3 \cdot f^{\prime}$
(o) - f(o)
(b) $32 \lambda(f)\left(\frac{1}{)}-3 f(0)-f^{\prime}(0)\right.$ ci $-32 \dot{\lambda}(f)(2 i): f(0)-3 f^{\prime}(0)$
(d) $\dot{\lambda} f(3)=f(0)-f^{\prime}(0)$

Q:2 Atternpt aliy Two question.
a. Stape, without profof, the existence and uniquenessthereon fol wis solution of an Ivp of linicar system of differential \& \& uations.
$\begin{gathered}\text { Determine whether the Iyp: y } \\ \vdots\end{gathered}=\left(\begin{array}{ccc}1 & -1 & 0 \\ \frac{1}{t^{2}-1} & 0 & -1 \\ 2 & \frac{1}{t^{2}+1} & 3\end{array}\right)+\left(\begin{array}{c}e^{\prime} \\ \cos t \\ e^{-1} \\ \ddots\end{array}\right)$

\therefore al following $\quad \therefore \because$
 equilik:latent to the Ivp: $y^{\prime}=\left[\begin{array}{cc}0 & 1 \\ -q & -q(i) \\ -1 & -i\end{array}\right]+\left(\begin{array}{l}0 \\ r(t)\end{array}\right], y\left(f_{0}\right)=\binom{\eta_{1}}{\eta_{2}}$ where p, q

b) Fint the Eigen palue of. $\left(\begin{array}{c}3 \\ 5 \\ -53\end{array}\right)$ and fundamental matrix of $Y!=\binom{3}{-53} y$ on $(-\infty, \infty)$

OR':
a) Define exponential of a nan wiatrix and fiud a fundamental niatix $\circ \quad y^{1 \times}\binom{21}{02}$) on $(\because-\infty, \ldots)$
 $\left(1-f^{2}\right) y^{12} 21 y^{1}+\alpha(\alpha+1) y=0 ; y(0)=1, y^{1}$. (0) $=\alpha$ has a solution which is a polynomial of turee 24 l S.t. Ansumeray two:
 $c_{0}=1$ in ary excluder aindel of 0 .
b) Q4fine Gamma function. State and prove the recursion formiula for - Gunna fünction.
-jsinte without proof, the first stiftiing increon for Laplace transform. Using in find the Laplace transforih of $t^{n} \mathbb{e}^{i}, C \in \mathbb{R}, n \in\{0,1,2 ; \ldots)$:
1.

Q:- Answer any two questions:

a) Define singular point, regular point of $g_{0}(t) y^{n}+9_{1}(t) y^{n-1}+\ldots . .+y_{t-1}$ (t) $y^{1}+9$ g(t) $y=0$. Locale and clacsify all singular points of $(t-1)^{3} y^{1}+$ $?(t-1)^{2} y t-1 y=0$.
b) Prove that a solution matr:x ip(i) $y^{\prime}-A(1) y$ on 1 is a funcamenesal matrix iff dett $\varphi(t) \neq 0, \forall \in \in I$ Solve, ${ }^{\prime 1}+3 y=\cos 21, y(0)=1 . y\left[\begin{array}{l}n \\ 2\end{array}\right]$ - draing Laplace ramsform
d) Solve $y^{\text {at }}+y=0, j=0, y^{l}=0$ when $l=0$ using Laplace trantuetia.

$$
003-01.6104
$$

Seat No
M. S. c. (Sem. I) (CBCS) Examination

December - 2011
n) Maths : CMT-1004

Differential Equations)
(New Course)
Faculty Code : 003
Subject Code : 016104
[Total Marks: 70

$$
2 \times 7=14
$$

1. Attempt any seven questions:
(i) The order of $y^{3}-i^{5}\left(y^{\prime}\right)^{4}+1\left(y^{\prime \prime}\right)^{2}+y^{\prime \prime \prime}$ is
(a) 5
(!) 2
(c) 4
(ii) $y^{\prime \prime}+y^{\prime}-\dot{y}=1, y(\dot{0})=0, y^{\prime}(0)=1$ is equivalent to
(a) $\because\left(\begin{array}{rl}-1 & 1 \\ 1 & -1\end{array}\right) y, y(0)=\binom{0}{1}$
$\therefore \because=\left(\begin{array}{rr}1 & 0 \\ -1 & -1\end{array}\right), y(0)=\binom{1}{0}$
(c) $\because=\left(\begin{array}{ll}0 & 1 \\ 1 & -1\end{array}\right) y, y(0)=\binom{1}{0}$
(d) $y^{\prime}=\left(\begin{array}{ll}1 & -1 \\ 0 & 1\end{array}\right) ; y(0)=\binom{1}{0}$
(iii) If $A(t)$ is an $n \times n$ matrix continuous on I and $\Phi(t)$, $\psi(t)$ are fundamental matrices of $y^{n}=A(t) Y$ on an interval then:
(a) $\psi(t)=C \dot{\Phi}(t), \forall i \in \mathcal{I}$ for some constant $n \dot{x} n$ matrix C
(b) $\dot{\psi}(t)=\Phi(t) C, \forall t \in]$ for some non -singular constant
$n \times n$ matrix C
(c) $\dot{\Phi}(t)=C \psi(t) ; \forall t \in I$ for some constant $n \times n$ matrix
(iv) If $/ \psi_{1}, \psi_{2}$ are two linearly independent solutions of U $y^{\prime \prime \prime}+p(1) y^{\prime}+y(1) y=0$ on I and $t_{10} \in l$ then the solution of $y^{\prime \prime}+p(1) y^{\prime}+q(1) y=r(1), y^{\prime}\left(t_{0}\right)=0, y^{\prime}\left(1_{0}\right)=0$ is 2 ilf)
(a) $\int_{i_{0}}^{1}\left[\psi_{1}(s)-\psi_{2}(s)\right] r(s) d s$
(b) $\int_{-T_{0}}^{1} \frac{\left[\psi_{2}(t)-\psi_{1}(s)\right]}{W\left(\psi_{1}, \psi_{2}\right)(t)} d s$
(c) $\int_{1_{0}}^{1} \frac{\psi(s)}{W} \frac{\psi_{2}(s)}{\left(\psi_{1} ; \psi_{2}\right)(s)} d s$
$\stackrel{(\mathrm{d})}{\int_{10}} \frac{\dot{y}_{2}(t) \psi_{1}(s)-\psi_{1}(s)(t) \psi_{2}(s)}{\mu_{1}\left(\psi_{1}, \psi_{2}\right)(s)}(s) d s$
(y) Fö $A=\left(\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right), \exp (i, A)=$
(a) $\operatorname{expr}\left(\begin{array}{ll}2 & t \\ 0 & 2\end{array}\right)$
(b). $\exp (2 t)\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$
(c) $\exp (2 t)\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right)$
(d) $\exp (2 t)\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$
(vi) For: $(t-1)^{3} y^{\prime \prime}+2(t-1)^{2}-7 y=0$.
(a) 0 is a singular poinc.
(b) D-is-a regtlar singular point
(c) $\because 1$ is a regular singular point
(18) 1 is an jiregular singular point
(vii) The indicial equation of $i^{2} y^{\prime \prime}-t y^{\prime}+t y=0$ is \qquad
(a) $: z(z-1)-z+1=0$
(b) $z^{2}=0$
(c) . $z(z-1)+z-1=0$
(d) $\because z(z-1)=0$
(viii) ty" $+t y^{\prime}-y=0$ has exactly \qquad solution(s) of the
form $\left.\right|^{2} \sum_{k=0}^{\infty} c_{1}^{k} c_{0}=1$ in an excludded nbhat-of θ
(a). 2
(b) 1
(c) $\because n_{0}$
(d) \because
(ix) If $f \in \exists$ and $\dot{E f}=F$ then z^{-j}

U $\quad r^{-1}\left(\ddot{F^{n}}(z)\right)(t)=\forall t \in[0 ; \infty)$
(a) $x^{n} f(x)$
(c) : $-f(t)$
(d) $-t(f(i))^{n}$

UAM-749-003-016104]

27

(x) For $(\because \in \mathbb{R}, L(\cosh C),(z)=$ \qquad $\forall z \in \subset$ st $R_{i} z>|c|$
(a) $\frac{z}{z^{2}+c^{2}}$
(b) $\frac{c}{z^{2}+c^{2}}$
(c) $\frac{-z}{z^{2}-c^{2}}$
(d) $\frac{c}{z^{2}-c^{2}}$

$$
2 \times 7=14
$$

2 Answer any two questions:
(a) Let $A(1)$ be an $n \times n$ matrix continuous on I. State and prove the necessary and sufficient condition for a solution
(i) If $\Phi(i)$ is a solution matrix of $y^{\prime} A(t) y$ on I then $\operatorname{det} \Phi\left(t_{0}\right) \neq 0$, for some $t_{0} \in J \Rightarrow \operatorname{det} \Phi(t)=0, \forall t \in J . X$.
(ii) The columns of an $n \times n$ matrix $A(t)$ on J are linearly independent \Rightarrow del $A(t) \neq 0 ; \forall t \in I$
(c) If Φ (i) is a fundamental matrix $y^{\prime} A(i) y$ on I then prove that $T(t)<$ is also a fundamental matrix, \forall nonsingular $n \times i i$ matrix C. Give an example to show that $C \dot{\Phi}(t)$ need not be even solution matrix of $Y:=A(t) Y$ on $\cdot 1$.

3 Answer the following :
(a) Define the Wronskian $W\left(f_{1}, f_{2}, \ldots, f_{n}\right)$ of $(n-1)$ times differentiable functions $\cdot f_{1}, f_{2}, \ldots f_{n}$ on for some $\cdots \cdots n_{2} \geqslant \underline{H_{1}} \underline{p}_{1} p_{2} ; \ldots$ p are continuous on then prove
 $y^{n}+p_{1}(t) y^{n-1}+\ldots+p_{n}(t) y \div 0$ are linearly independent ff $W\left(\dot{\psi}_{1}, \dot{\psi}_{2}, \dot{i}, \ddot{\psi}_{n}\right)(t) \neq 0, \forall t \in J$.
(b) Find the solution of the $1 v p$ y $=\left(\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right)\binom{\sin t}{\cos i}$,

UAM -749-008-016104] OR
(4) 0^{8}
[Contd...

3 (a) If A is a constant $\| \times n$ matrix then prove that exp $(A A)$ Lis the fundamental matrix of $y^{\prime}=A y$ on $(-\infty, \infty)$. Find $\exp (t A)$ for $A=\left(\begin{array}{ll}3 & 1 \\ 0 & 3\end{array}\right)$ $\because(16)$
(i) Find a particular solution and general solution of $\because y^{\prime \prime}+y=\tan r$ on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Show that $-\cos t \log \mid \sec i+\pi a n t$ is a solution of $y^{\prime \prime}+y=\operatorname{an} t$ on $\left(-\frac{\pi}{2} ; \frac{\pi}{2}\right)$.
4 Answer any two of the following:
$2 \times 7=14$
(a). If $x=2 m$ then prove that the

Imp $\left(1-t^{2}\right) y^{\prime \prime}-2 t y^{\prime}+\alpha(\alpha+1) y=0, y(0)=0, y^{\prime}(0)=1$
has power series solution which converges for $|f|<1$.
(b) (i) Locate and classify all the singular points of $r^{2}+1 y^{2}+\left(\alpha^{2}-t^{2}\right) y=0$ where α is a non-zero
constant. $\quad \therefore \cdots$
(ii) If 7 is a constant then determine the form of general solution and the region of validity of the general solution of $t y^{\prime \prime}+(1-t) y+c y=0$:
(c) If f g is differentiable and $f \in \mathcal{H}$ then prove that $L\left(f^{\prime}(t)\right)(z)=z \dot{L}(f)(z)-f(0)$ Deduce that if $f \in \mathcal{F}$ is n times differentiable and $f^{l}, \dot{f}^{2}, \ldots, f^{n} \in \exists$ then

$$
L\left(f^{n}(t)\right)(z)=z^{n} L(f)(z)-\sum_{j=0}^{n-1} z^{n-1} f^{j}(0)
$$

5 - Answer any two of the following :

(a) Deffer the sequence of successive approximations to the solution of $y=f(t ; y): j\left(t_{0}\right)=y_{0}$ where $f(t ; y)$ is a given function Construct the sequence of approximations
to $y^{\prime} \div \dot{y}, \dot{y}(0)=1$
(b) State and prove Gronwals' inequality

Q 6 (e) rind L er $^{-1}\left(\frac{3 z+7}{2^{2}-2 i-3}\right)$
(d) Salve $y^{\prime \prime}+25 y=10 \cos 51, y(0)=2, y^{\prime}(0)=0$ using Laplace


```
                    002-016104/B-74 Seat No
    M.Se, (GBCS) (Sem. I) Examination
                        November/December - 2010
        Oreimary Differential Equations
        (Model-A) (New Course)
        Facully Code : 003
                        Subjecr Code : 0161n^
```

 [Total Marks : 70
 Time: At Foma
() For $y^{\prime}=A(t) y$,
(A) rixn matrix $\Phi(t)$ on an interval 1 is a ficciamental matin: iff det $\Phi(t) \neq 0, \forall t \in l$.
(B) Han nxy matrix $\Phi(i)$ on an interval 1 is a fundmental matrix iff det $\Phi\left(f_{0}\right) \neq a$, for some $4<1$
(C) A shlution matrix $\Phi(n)$ on an interval 1 is a Eandamental matrix iff det $D\left(r_{0}\right) \neq 0$, for some fel.
(D) A solution matrix $\Phi(t)$ on an interval I is a Sudamentel matrix iet $\Phi\left(t_{0}\right)=0$, for some ${ }_{5}^{5}=1$.
(4) if © 6 \& fandamental matrix of $y=A(t) y$ on I徒却:
(A) A, C is olvo fundamental matrix of $y=A(t) y$ o. is. vano matrix C
(B) $8 t)$ is also a fundamental matrix of $y=A(t) y$ 25 I. \forall non-singular matrix $n \times n$ matrix C.
(C) $C \Phi(t)$ is also a fundamental matrix of $y^{\prime}=A(t) y$ on If for all $n \times n$ matrix C.
(D) C (f) is aiso a fundamentat matrix of $y=A(t) y$ on I, fox: all non singular $n \times n$ matrix C.
 the solution of $y=A(t) y^{\prime}+S(1), y^{\prime}(1-0$ or
(A) $\int_{r_{0}}^{1} \sin ^{-1}(s) S(s) d s s^{-}$
(B) $\Phi(i) . \int_{1_{0}}^{1} s(s) d r$
(Q) $\underbrace{-p(f)} \int^{1}\left(D^{\prime}(r) S^{\prime}(s) d i r\right.$
(I) $\dot{(i)} \int_{1}^{1}\left(D^{-1}(s) S(s) d s\right.$
(iv) For $A=\left(\begin{array}{cc}3 & 5 \\ -5 & 3\end{array}\right), \exp (t A)=$
(A) $e^{33}\left(\begin{array}{l}\cos 5 t \sin 5 t \\ -\sin 5 t \\ -\cos 5 t\end{array}\right)$
(B) $e^{5 i}\left(\begin{array}{cc}\cos 3 t & \sin 3 t \\ -\sin 3 t & \cos 3 t\end{array}\right)$
(C) $\quad\left(\begin{array}{cc}\cos 3 t & \sin 5 t \\ -\sin 5 i & \cos 3 t\end{array}\right)$
(D) $e^{3!}\left(\begin{array}{ll}\cos 5 t^{\circ} & -\sin 3 t \\ \sin 3 t^{\circ} & \cos 5 t\end{array}\right)$

() For $\because=f(t) y$,
(A) an $u \times n$ matrix $\Phi(1)$ on an interval 1 is a fuadameñel matix iff det $\Phi(1) \neq 0, \quad \forall t \in t$
(B) A: n×n matrix Φ (i) on an interval I is a funcmmental natrix iff det $\Phi\left(t_{o}\right) \neq 0$, for somte t. $\because 1$.
(C) A solution motrix $\Phi(1)$ on an interval 1 is a Gudanental matrix iff det $\Phi\left(I_{0}\right) \neq 0$, for some \& \in
(I) A colution matrix $\Phi(t)$ on an interval 1 is a findementel matrix det $\Phi\left(t_{0}\right)=0$, for some $t 5 y$

(A) aref is also a findamental matix of y an f(t) \& i, v akn matrix C
(D) -42 is also a fundamental mathe of $y=1(y$观 I. \forall non-singular matrix $n \times p$ matn a
(C) $\mathrm{C} \Phi(a)$ is also a fundamental matiix of y^{2} w 64$) y$ on I. for all in $\times n$ matrix C.
(D) $C V_{i}$ is also a fundamental matur or $y=A(2)$ on 1. for all non singular n×n matix O.

32

(iii) If 小(1) i : 1 lmalimmalal mailis of : \therefore iv w: i., 11 the solulion of $i=A(1) y+S(1), y(i)=$,0 is
(A) $\int_{0}^{1} \Phi^{-1}(s)(s) d s$
(B) $\Phi(i) \int_{1,}^{1} s(s)!/$

(iv) For $A=\left(\begin{array}{cc}3 & 5 \\ -5 & 3\end{array}\right)$, exprtA) $=$ \qquad
(A) $e^{3 t}\left(\begin{array}{ll}\cos 5 t & \sin 5 t \\ -\sin 5 t & \cos 5 t\end{array}\right)$
(B) $e^{5 i}\left(\begin{array}{cc}\cos 3 t & \sin 3 t \\ -\sin 3 t & \cos 3 t\end{array}\right)$
(C) $\left(\begin{array}{cc}\cos 3 t & \sin 5 t \\ -\sin 5 i & \cos 3 t\end{array}\right)$
(D) $e^{3 t}\left(\begin{array}{ll}\cos 5 t & -\sin 3 t \\ \sin 3 t & \cos 5 t\end{array}\right)$
(v) If $a_{c}(t), a_{1}(t), c_{2}(1)$ are analytic at t_{0}, then j_{0} is a singlat poirt of $a_{0}(i) y " a_{1}(t) y^{\prime}+a_{2}(t) y=0$ if

(B) $a_{0}\left(t_{0}\right)=0$ but not all $a_{i}\left(t_{0}\right), a_{2}\left(t_{0}\right)$ are zero
(C) $\pi_{0}\left(\sigma_{0}\right)=0$
(D) alll of $a_{0}(t), a_{1}(t) a_{2}(t)$ are zero at t_{0}
(ri) If , $y_{1} ; a_{2}$ are none-zero constants then for the Euler equatioir $(t-1)^{2} y^{\prime \prime}+(t-1) a_{1} y^{\prime \prime}+a_{2} y=0$
(A) I is a reguapr point
(恖 is a regular singular point
(C) 1 as ain iresular sugular point
(D) 1 is an ordinary point
(vii) If $\alpha(t) \sum_{k=0}^{\alpha} \alpha_{k} k^{k}, \beta(t) \sum_{k=0}^{\alpha} k_{k}^{k} \forall k k^{k} r$ for none $r>0$
then the indicial equation of $x^{2} y^{1}+t \alpha(t) y^{1}+\beta(t) y=0$
is
$(A) \quad \alpha_{0} \beta+F=0$
(B) $Z \div O_{0}(z \div 1)+\beta_{0} \doteq 0$
(C) $z^{2}+\beta_{0} Z+a_{0}=0$
(D) $Z(Z-1)+\dot{\alpha}_{0} \dot{z}+\beta_{0}=0$

34

(viii) If α, β are analytic at 0 and z_{1}, z_{2} are the roots of the indicial quation of $t^{2} y^{1:}+\operatorname{cat}(t) y^{\prime}+f(b) y=0$ wis. $k_{r} Z_{1} \geq k_{e} Z_{2}$ then $t^{2} y^{\prime \prime}+t \alpha(t) y^{\prime} \beta(t) y=0$ has two lineriy independent solutions of the tom $\left.!t\right|^{\pi} \sum_{k=0}^{\alpha} C_{l} t^{i}, C_{0}=1$ in an excluded nbhd of o if:
(A) z_{1}, z_{2} are distinct
(B) $Z_{1}=Z_{2}$
(C) $Z_{1}-Z_{2}$ is not equal to $0,1,2, \ldots$
$Z_{1}-Z_{2}$ is positive integer,
(ix) If $\dot{L}(\mathrm{f})=\mathrm{F}$ and $\left(E \in \mathbb{t}\right.$ then $l\left(e^{c t} f(t)\right)=$
(A) $\mathrm{F} \cdot(\mathrm{Z}+\mathrm{C})$
(B) $\overrightarrow{\mathrm{F}}$ (BC)
(C) $F(\mathrm{Z})+\mathrm{C}$
(D) $F(\mathrm{C}) \mathrm{C}$
(x) For $C \in C^{-1}\left(\frac{C}{Z^{2}+C^{2}}\right)=$

$$
\therefore L(s c) L(-n)
$$

(5) $-6 x(t))$
ex $)$
(A) coset

$F(-C)$
Answer 2 two questions

(3) State ant prove variation of constant formula for the

 solver of the IVP $y^{\prime}=A(t) y+S(t), \quad y\left(t_{0}\right)=0$ on an intexyel in containing t_{0} :(ii) If $\alpha=2 m$, where n is a nonnegative integer then prove that the solution of the IVP $\left(1-1^{2}\right) y^{11}-2 t y^{1}+\alpha(\alpha+1) y=0$; $y(0)=1 ; y(o)=0$ is a polynomial of degice 2 m .
(ti) State, without proof, Gronwall's inequality. Hence $O R$ othempe prove that the solution of the $\mu^{\prime \prime}=y^{3}=f(i ; y)$, $y\left(t_{c}\right)=\%$ has a unique solution where $f: R \rightarrow R$ is
com inns, bended, $\frac{d f \text {, is continuous and bounded }}{d y}$ and $\ddot{x}=\left\{(1, y)|i-i<a,| \cdot y-y_{o}<b\right\}$

3 : Answer the following :

ane linearly independent eigen vectors

 caresponding to the eigen values $\lambda_{1} \lambda_{2}, \lambda_{n} A$ then prove that.$$
\begin{aligned}
& \mathbb{D}(i)=\left[e^{\lambda_{1}^{i}} \dot{j}_{1}, e^{e^{2}}, y_{2}, \ldots, e^{\lambda_{m}} y_{n}\right] \text { is } \quad \text { fundaniontal } \\
& \text { matrix for } y \text { on }(-\alpha, \alpha) \text {. }
\end{aligned}
$$

36

 prove that

$$
L\left(j^{\prime-} i()\right)(z)=z^{\prime \prime}\left(L(f)(z)-\sum_{j-i}^{n-1} z^{n-1-j} j^{j} \theta^{\prime}\right.
$$

(c) Locate and classify the singular pei ta of :
(2) (i) Solve the $W P: y^{1}=\left(\begin{array}{cc}1 & 1 \\ 0 & 1\end{array}\right) y+\left(\frac{e^{-t}}{0}\right) ; y(o)=\left(\frac{-1}{1}\right)$.

$$
(1-1)^{3} y^{11}+2(1-1)^{2} y^{1}-71 y=0
$$

$$
\dot{O R}
$$

4 Answer any two of the following
(i) : If $p(t), q(t)$ are continuous on some inter al I and.
U. $\because \in I$ then prove that for every $y_{0} \in 12$, the ry $y^{i}+j(t) y=q(t), \mu\left(t_{v}\right)=y_{0}$ has a unique súnion mus I.
 using Laplace transform.
(iii) Solve that the equation ty \qquad

$$
\left.\therefore \text { one solution of the form } \|_{i} t\right]^{2} c_{k} t^{k}, c_{o}=1 \text { in an: }
$$

$$
\text { excluded nbhd of } 0 \text { : }
$$

37

5 Answer: gay two of the following
(i) Dias the Wronskian $w\left(f_{1}, f_{2}, \ldots, f_{n}\right)$ on $n-1$
tires differentiable functions $f_{1}, f_{2}, \ldots, f_{n}$. If $p_{1}, P_{2}, \ldots p_{n}: I \rightarrow \mathbb{k}$ are continuous then prove that ! solutions $\psi_{1}, w_{2}, \ldots \dot{w}_{n}$ of $y^{\prime \prime}+p_{1}(1) y_{1}^{\prime \prime-1}+\ldots+p_{n}(t) \dot{n}=0$ on
I are linearly independent of $n\left(v_{1}, v_{2}, \ldots \psi_{n}\right)(r) \neq 0 ; \forall I \in I$.
(ii) Find a fundamental matrix of $y^{\prime}=A y$ on $(-\infty, \infty)$

7
\odot

(iii) side the IVP : $y^{\prime \prime}=2 t y^{\prime}+2 m y=0, n=2 n n$, aierseger, $y(0)=\frac{(-1)^{\prime \prime}(2 m)}{m!}, y^{\prime}(0)=0$ $(0)=(-1)^{m}(2 m)$
$m \times 1$

4
6
1 2
$005010104-50$
$7 n=3+5 i$
$=3=5$

Time : $2 \frac{1}{2}$ Hours]
[Total Marks : 70

Instructions : (1) Answer all the questions.
(2) There are five questions.
(3) Figures to the right indicate full marks.

$$
7 \times 2=14
$$

1 Answer all questions :
(1) Find general solution of $y^{\prime \prime \prime}+3 y^{\prime \prime}+3 y^{\prime}+y=0$ on \mathbb{R}
(2) (a) Define Gamma Function and
(b) State Bessel's Equation.
(3) Prove that $e^{3 t}$ and $t e^{3 t}$ are two Linearly Independent solutions of $y^{\prime \prime}+6 y^{\prime}+9 y=0$ on $(-\infty, \infty)$.
(4) Define : (1) Fundamental Matrix
(2) Irregular Singular Point.
(5) Let A be a $n^{*} n$ matrix then Show that A has atmost n distinct Eigen values and A has atmost n L.I Eigen vectors.
(6) If y_{1}, y_{2} are solutions of
$\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+p(p-1) y=0$ with the initial conditions $y_{1}(0)=(0), y_{1}^{\prime}(0)=-1, y_{2}(0)=1, y_{2}^{\prime}(0)=0$ then find $w\left(y_{1}, y_{2}\right)\left(\frac{1}{2}\right)$.
(7) State First Shifting Theorem and find $L\left(e^{a t}\right)(z)$.
(8) State Second Fundamental Theorem of calculus and Find Gamma (1)
(9) Let A and B be $n^{*} n$ matrix and $A B=B A$ then $\exp (A+B)=\exp (A) * \exp (B)$
(10) State the condition of the solution of an Initial value Problem of a system of $1^{\text {st }}$ order linear differential equation.

2 Answer any two :
(1) State and prove Gromwell's Inequaiity.
(2) Prove that if $\alpha=2 m+1$ where m is a non-negative integer then the solution ϕ of the Legendre's equation with $y(0)=0$ and $y^{\prime}(0)=1$ is a polynomial of degree $2 m+1$. Compute this polynomial for $m=0,1,2$.
(3) (a) Construct the successive approximation $\phi_{0}, \phi_{1}, \phi_{2}, \phi_{3}$ to a solution of $y^{\prime}=\cos y$ with $y(0)=0$.
(b) State and prove Variation of constant formulae for scalar linear first order homogenous differential equation.

3 All are compulsory :
(1) Find the solution of the initial value problem $y^{\prime}=t y$ with $y(0)=1$ and $y^{\prime}(0)=0$.
(2) Let A be a constant 2×2 complex matrix then prove that there exists a constant 2×2 non-singular matrix

3 All are compulsory :
(1) Find the particular solution of $y^{\prime \prime}+y=2 \times 7=14$

$$
\left(\frac{-\pi}{2}, \frac{\pi}{2}\right) ; y(0)=0 \text { and } y^{\prime}(0)=0 \text {. }
$$

(2) Prove that if $P_{1}, P_{2}, P_{3}, \ldots P_{n}: l \rightarrow \mathbb{R}$ are continuous order scaler linear differential equations are linearly
independent if and only if $w\left(\varphi_{1}, \varphi_{2}, \varphi_{3}, \ldots \varphi_{n}\right)(t) \neq 0 ; \forall t \in 1$.

4 Answer the following questions :
(1) Find Fundamental Matrix of $y^{\prime}=A(t) y$ on $(-\infty, \infty)$ where $A(t)=\left[\begin{array}{cc}2 & 1 \\ -1 & 1\end{array}\right] \forall t \in-(-\infty, \infty)$ and find \exp $(t A) ; \forall t \in(-\infty, \infty)$.
(2) Prove that Eigen vectors corresponding to the distinct Eigen values of $n * n$ matrix are linearly independent in \mathbb{R}^{n} or \mathbb{C}^{n}.

5 Answer any two :
(1) Find : (a) $L(\sinh c t)(z)$ and (b) $L($ Cosat $)(z)$.
(2) Define Convolution. Further show that if $f \in H$ and $\frac{f(t)}{t} \in H$ then $L\left(\frac{f(t)}{t}\right)(z)=\int_{z}^{\infty}(L f(w)) d w$ for which $\operatorname{img}(w)$ is bounded and $\operatorname{Re}(w) \rightarrow \infty$.
(3) (a) State and prove change of scale property.
(4) Solve $y^{\prime \prime}-3 y^{\prime}+2 y=4 e^{2 t}$ with $y=-3$ and $y^{\prime}=5$ when $t=0$ using Laplace Transform.

|||

Seat No. \qquad F8AB-003-1161006
M. Sc. (Sem. I) Examination December - 2022
Mathematics : EM'T-1001
(Classical Mechanics - I)
Faculty Code : 003
Subject Code : 1161006

Time: $2 \frac{1}{2}$ Hours / Total Marks : 70

Instructions : (1) There are total five questions.
(2) Each question carries equal marks.
(3) All the questions are compulsory.

1 Attempt the following : (any seven)
(1) Define : Radius vector and Acceleration.
(2) Define : Moment of force.
(3) Define with example : Non-Holonomic constraints.
(4) Define with example : Scaleronomuous constraints.
(5) When a system is said to be a conservative ?
(6) Define with example : Degrees of freedom.
(7) Define : Configuration space.
(8) Find the degrees of freedom of fixed fulcrum and bob of a simple pendulum.
(9) Define central force.
(10) State only the Kepler's third law of planetary motion.

2 Attempt the following :
(a) State and prove angular momentum conservation theorem for the mechanics of system of particles.

OR
Discuss in detail the conservation of total energy for a system of particles.
(b) Discuss in detail the problem of Atwood machine.

OR
Derive the Lagrange's equations of motion for a single particle in space with mass m in
(i) Cartesian co-ordinates
(ii) Plane polar coordinates

3 Attempt the following :
(a) Find the minimum surface of revolution about y-axis.
(b) Derive the Lagrange's equations of motion for general system.

OR

(b) A particle falls a distance y_{o} in a time $t_{o}=\sqrt{2 y_{o} / g}$. If the distance $y=a t+b t^{2}$ then show that the integral $\int_{0}^{t_{0}} L d t$ has an extremum for real values of coefficients only when $a=0$ and $b=\frac{g}{2}$.

4 Attempt the following :
(a) Derive the equations of motion and find the first integrals for two bodies central force motion.
(b) Show that the shortest distance between two points in plane is a straight line.

5 Attempt the following : (any two)
(a) Derive the orthogonal matrix of transformation in two dimensional co-ordinate system.
(b) Define cyclic coordinate and show that if V being independent of velocities and L is not an explicit function of time then total energy is conserved.
(c) Define Euler angles and obtain the transformation matrix A from space axes to body axes. Also derive A^{-1}.
(d) Define Coriolis force and discuss any two effects of it.

SBW-003-1161006

Time : $2 \frac{1}{2}$ Hours]

[Total Marks : 70

Instructions : (1) Attempt any five questions from the following.
(2) There are total ten questions.
(3) Each question carries equal marks.

1 Attempt the following :

(1) Define : Velocity, Acceleration and Linear Momentum.
(2) Define : Configuration space.
(3) Define with example : Non-Holonomic constraints.
(4) Define with example: Scaleronomuous constraints.
(5) When a system is said to be a conservative ?
(6) Define : Degrees of freedom and count the number of degrees of freedom of a fixed fulcrum of a simple pendulum.
(7) State the problems arising due to constraints.

2 Attempt the following :
(1) Define : Monogenic system. Is the monogenic system conservative ? Justify your answer.
(2) State only the Hamilton's variational principle.
(3) State only the Kepler's first law of planetary motion.
(4) Find the degrees of freedom for dumbbell and bob of a simple pendulum.
(5) Define : angular momentum.
(6) Define: central force.
(7) Define : Torque on the motion of a particle.

3 Attempt the following :
(a) State and prove linear momentum conservation theorem
(b) Discuss in detail the conservation of total energy for a system of particles.

4 Attempt the following
(a) For the problem of Atwood machine show that $\tilde{x}=\left(\frac{M_{1}-M_{2}}{M_{1}+M_{2}}\right) g$.
(b) Derive the Lagrange's equations of motion for conservative Holonomic system.

5 Attempt the following :
(a) Derive the Lagrange's equations of motion for a single particle in space with mass m in
(i) Cartesian co-ordinates
(ii) Plane polar co-ordinates
(b) Find the minimum surface of revolution about y-axis.

6 Attempt the following :
(a) Show that central force motion of two bodies about their C.M. can always be reduced to an equivalent one body problem.
(b) Derive the equations of motion and find the first integrals for two bodies central force motion.

7 Attempt the following :
(a) Find the shortest distance between two points in plane.
(b) A hoop rolling without slipping down an inclined plane then find the force of friction acting on the hoop.

8 Attempt the following :
(a) Discuss in detail the use of direction cosines to describe the independent co-ordinates relative to the rigid body motion.
(b) Define cyclic co-ordinate and show that if V being independent of velocities and L is not an explicit function of time then total energy is conserved.

9 Attempt the following :
(a) Derive : Kepler's third law of planetary motion.
(b) Derive the orthogonal matrix of transformation in XYplane.

10 Attempt the following :
(a) Derive the orthogonal transformation in terms of Cayley-Klein parameters.
(b) Define Euler angles and obtain the transformation matrix A from space axes to body axes.

BA-003-1161006

Seat No. \qquad
M. Sc. (Sem. I) (CBCS) Examination

March - 2021
EMT - 1001 : Mathematics
(Classical Mechanics - I)
Faculty Code : 003
Subject Code : 1161006

Time : 2 $\frac{\mathbf{1}}{\mathbf{2}}$ Hours]
[Total Marks : 70

Instructions : (1) Attempt any five questions from the following.
(2) There are total ten questions.
(3) Each question carries equal marks.

1 Attempt the following :
(1) Define : Linear momentum.
(2) State only the Linear momentum conservation theorem for a single particle.
(3) Define with example : Non-Holonomic constraints.
(4) Define with example : Rheonomuous constraints.
(5) Define with example : Degrees of freedom.
(6) What is monogenic system ?
(7) Define : Configuration space.

2 Attempt the following :
(1) Define : Cyclic co-ordinate.
(2) What will be the shape of orbit of the planet mercury about the Sun ?
(3) State only the Kepler's first Law of planetary motion.
(4) Define Central Force.
(5) Define moment of force.
(6) State the equation of constraints acting on the rigid bodies.
(7) Define generalized momentum with respect to the coordinate x.

3 Attempt the followings :

(a) Discuss in detail the Brachestochrone problem.
(b) State and prove angular momentum conservation theorem for a single particle.

4 Attempt the following :
(a) Explain in detail the conservation of total energy for a system of particles.
(b) State and prove linear momentum conservation theorem for a system of particles.

5 Attempt the following :
(a) Explain in detail principle of virtual work and derive the D'Alembert's principle.
(b) Using D'Alemberts principle derive the Lagrange's equations of motion for general system.

6 Attempt the following :
(a) If the total mass of the system is concentrated about C.M. and moving with it then show that the total K.E. of the system is K.E. at the C.M. plus K.E. about C.M.
(b) Obtain the equations of the motion for a particle in space with reference to Cartesian as well as polar coordinate systems.

7 Attempt the following :
(a) Discuss in detail the problem of Atwood machine and show that the tension of rope appears nowhere in the equation of motion.
(b) Derive Lagrange's equation of motion using Hamilton's variational principle.

8 Attempt the following :
(a) Show that the central force motion of two bodies about their centre of mass can always be reduced to an equivalent one body problem.
(b) Discuss in detail the techniques of calculus of variations.

9 Attempt the following :

(a) A particle of mass m moves under a central force then show that :
(i) Its orbit is a plane curve.
(ii) Its areal vector sweeps out equal area in equal time.
(b) Determine the nature of orbit of a particle moving under an attractive the force $F=^{-k} / r^{2}$ (where $k=$ constant). Also derive the Kepler's third Law of planetary motion.

10 Attempt the following :
(a) Define Euler angles and obtain the transformation matrix from space axes to body axes.
(b) Define Cayley-Klein parameters and obtain the orthogonal matrix of transformation in terms of Cayley-Klein parameters.

JBH-003-1161006
 Seat No.
 M. Sc. (Sem. I) (CBCS) Examination

December - 2019
Mathematics : EMT-1001
(Classical Mechanic-I)
(Old \& New Course)

Time: $\mathbf{2} \frac{1}{2}$ Hours]
 [Total Marks : 70

Instructions :

(1) There are five questions.
(2) Attempt all the questions.
(3) Each question carries equal marks.

1 Attempt any seven : 14

1. Define : Linear momentum and Angular momentum of a particle.
2. State minimum two differences between Holonomic constraints and non-Holonomic constraints.
3. Define with example: Scaleronomous constraints.
4. When a system is said to be a conservative?
5. Define: moment of force.
6. Define with example: Degrees of freedom.
7. Define: Configuration space.
8. Define: Cyclic co-ordinates.
9. State only the Hamilton's variational principle.
10. State only the Kepler's first law of planetary motion.

2 Attempt the following :
(a) Derive the Lagrange's equations of motion for general system.

OR

(a) State and prove Angular momentum conservation theorem for a system of particles.
(b) Discuss in detail the conservation of total energy for a system of particles.

3 Attempt the following :
(a) Derive the Lagrange's equations of motion using Hamilton's variational principle.

OR
(a) Discuss in detail the problem of Atwood machine and show that the tension of rope appears nowhere in the expression of acceleration.
(b) Find the shortest distance between two points in plane.

4 Attempt the following :
(a) Derive the matrix of orthogonal transformation in terms of Cayley-Klein parameters.
(b) A hoop rolling without slipping down an inclined plane then find the force of friction acting on the hoop.

5 Attempt any two :
(a) Derive the equations of motion and the first integrals for two bodies central force problem.
(b) Discuss in detail the use of direction cosines to describe the independent co-ordinates relative to the rigid body motion.
(c) Define Euler angles and obtain the transformation matrix from space axes to body axes.
(d) Define Coriolis force and discuss any one effect of the same.
(e) A particle falls a distance y_{o} in a time $\mathrm{t}_{0}=\sqrt{2 y_{0} / g}$.

If the distance $\mathrm{y}=a t+b t^{2}$ then show that the integral $\int_{0}^{t_{0}} L d t$ has an extremum for real values of coefficients only when $\mathrm{a}=0$ and $b=\frac{g}{2}$.PCG-003-1161006Seat No. 15044
M. Sc. (Sem. I) (CBCS) Examination
December - 2018
CMT - 1001: Mathematics
(Calssical Mathematics)
(New / Old Course)
Faculty Code : 003
Subject Code : 1161006
Time : $\mathbf{2} \frac{1}{2}$ Hours] [Total Marks : 70
Instructions : (1) All questions are compulsory.
(2) There are five questions.
(3) Figures on right side indicate the marks.
1 Attempt any seven : 14
(1) Define : Linear momentum.
(2) Define : torque or moment of force.
(3) Define with example : Holonomic constraints.
(4) Define with example : Scaleronomuous constraints.
(5) When a system is said to be conservative?
(6) Define with example : Degrees of freedom.
(7) Define : Configuration space.
(8) Define : Monogenic system.
(9) State only the Hamilton's variational principle.
(10) State only the Kepler's third law of planetary motion.
2 Attempt the followings : 14(a) State and prove linear momentum conservation theoremfor a system of particles.
OR
(a) Discuss in detail the conservation of total energy for a system of particles.
(b) Derive the Lagrange's equations of motion for conservative Holonomic system.

3 Attempt the followings :

(a) Derive the Langrange's equation of motion for a single particle in space with mass m in
(i) Cartesian co-ordinates
(ii) Plane polar co-ordinates

OR
(a) Discuss in detail the problem of Atwood machine.
(b) Find the shortest distance between two points in plane.

4 Attempt the followings :
(a) A hoop rolling without slipping down an inclined plane then find the force of friction acting on the hoop.
(b) A particle falls a distance y_{0} in a time $t_{0}=\sqrt{2 y_{0} / g}$. If the distance $y=a t+b t^{2}$ then show that the integral $\int_{0}^{t_{0}} L d t$ has an extremum for real values of coefficients only when $a=0$ and $b=\frac{g}{2}$.

5 Attempt any two :

(a) Derive the equations of motion and find the first integrals for two bodies central force problem.
(b) Discuss in detail the use of direction cosines to describe the independent co-ordinates relative to the rigid body motion.
(c) Define Euler angles and obtain the transformation matrix from space axes to body axes.
(d) Derive the orthogonal transformation in terms of Cayley-Klein parameters.
(e) Define cyclic co-ordinate and show that if V being independent of velocities and L is not an explicit function of time then total energy is conserved.

Faculty Code : 003
Subject Code : 1161006

Time : $2 \frac{1}{2}$ Hours]
[Total Marks : 70

Instructions : (1) Attempt all the questions.
(2) Figures on right side indicate the marks.

1 Attempt any seven :
(1) Define: Linear momentum.
(2) Define: torque or momentum of force.

- (3) Define with example: Non Holonomic constraints.
- (4) Define with example: Rheonomous constraints.
(5) When a system is said to be a conservative?
(6) Define with example: Degrees of freedom.
- (7) Define: Configuration space.
(8) Define: Monogenic system.
-(9) State only the Hamilton's variational principle.
-(10) State only the Kepler's first law of planetary motion.
2 Attempt the followings :
(a) State and prove Angular momentum conservation theorem for a system of particles. OR
\checkmark (a) Discus in detail the conservation of total energy for a system of particles.
\checkmark (b) Derive the Lagrange's equations of motion for general system.

3 Attempt the followings : equations of motion using
(a) Derive the Lagrange's equale. ch-2 Hamilton's variational principle. c_{7}

OR
(3) Discuss in detail the problem of Atwood machine. ch-1 (b) Find the shortest distance between two points in plane. ch. -2

4 Attempt the followings :
(a) A particle falls a distance y_{0} in a time $t_{0}=\sqrt{2 y_{0} / g}$. If the distance $y=a t+b t^{2}$ then show that the integral $\int^{t_{0}} L d t$ has an extremum for real values of coefficients 0 only when $a=0$ and $b=\frac{g}{2} . \quad \begin{gathered}c h-2\end{gathered}$
(b) A hoop rolling without slipping down an inclined plane then find the force of friction acting on the hoop.

$$
(x+2)
$$

5 Attempt any two :
(a) Derive the equations of motion and find the first integrals for two bodies central force problem. कh-3 8^{3})
(b) Discuss in detail the use of direction cosines to describe the independent co-ordinates relative to the rigid body motion.
(c) Define Euler angles and obtain the transformation matrix from space axes to body axes.
(d) Derive the orthogonal transformation in terms of Cayley-Klein parameters.
\qquad

M. Sc. (Sem. 1) (CDCS) Tx\&mman!on

December - 2016
EMT - 1001 : Mathemntics
(Classical Mechanios - I) (New Course)

Faculty Code : 003
Subject Code : 1161006

Time : $2 \frac{1}{2}$ Hours]
Thatil Marks : 70

Instructions : (i) Attempt all the questions.
(ii) Each question carry equal marks.

1. Attempt the following : (any seven) $7 \times 2=14$ 2% (1) Define holonomic constraints \Rightarrow 4nit -(1)
28-(3) Define Rheonomous constraints.-(1)
35 (3) Define with example : Degrees of freedom.
(4) Define configuration space. L
(S) Define monogenic system. -
(6) State only the Hamilton's variational principle.
(T), State only the Kepler's first law of planetary notion -
18) Define cyclic co-ordinate. -
(9) State only the Kepler's third law of planetay motion.
$3 \times 10)$ Determine the degrees of freedom of a dumbbell.

2 Atlempt the following : (any (wo) $2 \times 1=14$
N(1) Explain in detail the conservaton of total encrgy fer a system
$\mathrm{p},-\frac{22}{=}$ of particles.
(b) Explain in detail the principle of vitual work ant tavice

31 D'Alembert's priniple.
(c) Derive the equations of motion for a singte purtele in spee ia
49. (i) Cartesian co-ordinates
(ii) Plane polar co-ordinater. T^{4})

3 Attempt the following a 4 = 14 ch .1 (28)
(1) Derive the lagrange's equations of motion for a general system. $\left.-4 \frac{2}{2}\right)^{2}$
(6) Discuss in detail the problem of Atwood machine. -53

3 (a) Discuss in detail the techniques of calculus of variations.
(b) Find the shortest distance between two points in a plane.

4 Attempt the following : $2 \times 7=14$
(a) Derive the equations of motion and first integrals in the problem of two body central force motion. (83) ch -3.
(b) State and prove Euler's theorem for the motion of a rigid body.

5 Attempt any two: $2 \times 7=14$.
fl) Define Euler angles and obtain the transformation matrix from

- apace axes to body axes.
(2) Discuss in detail the infinitesimal rotations and derive the formula $d r=r x d \Omega$.

(3) Establish the formula

$$
\left(\frac{d}{d t}\right)_{s}=\left(\frac{d}{d t}\right)_{r}+w x
$$

Where notations are being usual.
(A) Heplain coriolis force and discuss any two effects of it.

BBP-003-016106
Seat No
M. Sc. (Mathmematies) (Sem. I) (CBCS) Examination December - 2015
EMT - 1001 : Classical Mechanics - I
Faculty Code : 003
Subject Code : 016106

Time: $2 \frac{1}{2}$ Hours
[Total Marks : 70

Instructions : (1) Attempt all the questions.
(2) Each question carries equal marks.
(3) There are five questions.

1 Choose the appropriate alternativefalternatives: (any seven)
(1) The angular momentum of a particle is defined as
(A) $\mathrm{p}=\mathrm{mV}$
(B) $\mathrm{L}=\mathrm{r} \times \mathrm{P}$
(C) $\mathrm{N}=\mathrm{r} \times \mathrm{F}$
(D) $\mathrm{F}=\mathrm{ma}$
(2) The linear momentum is conserved if
(2) $F=0$
(B) $\mathrm{N}=0$
$T=0$
(D) None of these
(3) The shortest distance between two points in a plane is
(A) Parabola
(B) Ellipse
(ter) Straight line
(D) Circle
(4) The kinetic energy of the system is defined as
(A) $\mathrm{p}=\mathrm{mV}$
(B) $V=m g h$
(C) $\mathrm{F}=\mathrm{ma}$
(C) $T=\frac{1}{2} \mathrm{mV}^{2}$
(5) The angular momentum of a particle is conserved if
(A) $T=0$
(3) $\mathrm{N}=0$
(C) $\mathrm{F}=0$
(D) None of these

(6) Any coordinate q, is cyclic if
(A) $\frac{\partial L}{\partial a_{j}}=0$
(B) Lagrangian does not contain q_{j}
(C) $\mathrm{L}=0$
(D) None of these
The nature of orbit of planet venus
$\begin{array}{ll}\text { (A) Ellipse } & \text { (B) Circle }\end{array}$
(D) None of these
(8) According to Kepier's law the areal vector sweeps out
(A) half area in double time
(B) double area in half time
(C) one fourth area in half time
(D) equal area in equal time

> (D) equal $\begin{array}{ll}\text { (9) The number of degrees of freed } \\ \text { (B) } 3\end{array}$
p.5. ${ }^{3}$ (A) 2
(B) 3
$3 \mathrm{~N}-\mathrm{K}$
(D) 6
$3(2)-1$

pendulum is
3N-K
(A) 1
(8) $0 \quad .8(1)^{-3}=0$
(C) 2
(D) 3

2 Attempt any two :
(a) State and prove linear momentum conservation theorem for a system of particles.
(b) If the total mass ofthe system is concentrated about C.M. and moving with it then show that the total K.E. of the system is K.E. at the C.M. + K.E. about C.M.
(c) Find the equation of motion for a bead sliding on a uniformly rotated wire in a force free space.

3 Attempt the followings :
\circ (a) Discuss in detail the problem of Atwood Machine.

OR

(a) Discuss in detail the Brachestochrone problem.
(b) Derive Lagrange's equations of motion for general system.

4 Attempt the followings :
(a) A hoop rolling without slipping down an inclined plane then find the force of friction acting on the hoop.
(b) State Hamilton's variational principle and find the minimum surface of revolution about Y -axis.

OR

(b) A particle falls a distance X_{0} in a time $t_{y}=\sqrt{\frac{2 y_{g}}{8}}$ if the distance y at any time t is $y=a t+b t^{2}$ then show that the integral $\int_{0}^{t_{0}} L d t$ is extremum for real values of the coefficients only when $a=0$ and $b=g / 2$.

6 Attempt any two :
(a) Define cyclic coordinates and show that the generalized momentum conjugate to a cyclic coordinate is conserved. Using this result derive that if component of applied torque vanishes then the corresponding component of angular momentum is conserved.
(b) Show that the central force motion of two bodies about their C.M. can always be reduced to an equivalent one body problem.
(c) A particle of mass m moves under a central force then show that
(1) Its orbit is a plane curve
(ii) Its areal vector sweeps out equal area in equal time.

003-016106

M.Sc. (Matis) (Scm.-1) Examination

December-2014
'Mathematics'
EMT - 1001: Classical Mechanics - I

Faculty Code : 003
Subject Code : 016106
[Total Marks: 70
Instructions: (1) Attempt all the question
(2) Each question carries equal marks.

1. Chease the appropriate alternative/alternatives (any seven) :
(1) The linear momentum is defined as
(a) $L=r \times p$
(c) $\mathrm{N}=\mathrm{r} \times \mathrm{F}$
\& $\mathrm{p}=\mathrm{m} v$
(d) $\mathrm{L}=\mathrm{T}-\mathrm{V}$
(2) The angular momentum of a particle is conserved if
(a) $\mathrm{L}=0$
(b) $\mathrm{p}=0$
(c) $\mathrm{N}=0$
(d) $\mathrm{F}=0$
(3) The shortest distance between two points in a plane is
(a) Circle
(b) Parabola
(c) Straight line
(d) None of these
(4) The Lagrangian L is defined as
(a) $\mathrm{T}+\mathrm{V}$
(b) $\mathrm{I} \times \mathrm{F}$
(e) $\mathrm{T}-\mathrm{V}$
(d) T^{2}
(5) Any physical quantity q is conserved provided
(4) $q=0$
(b) $q=0$
(c) derivative does not exist
(d) None of these
(6) Any co-ordinate q_{1} is.eyclic provides
(a) Lagrangian does not contain $q_{\text {; }}$
(b) $\frac{\partial L}{\partial q_{j}}=0$
(c) $\mathrm{L}=0$
(d) $\quad q_{1}=0$
7) According to Kepler's law the areal vector sweeps out
(a) double area in half time
(b) half area in double time
(d) None of these
(8) Holonamic constraints are
(a) Zero
(19) expressible in terms of algebraic equations
(c) can't be express in terms of algebraic equations \Rightarrow Non-hodonamnic.
(d) None of these
(9) Rheonomons constraints are
(9) dependent on time
(c) constant in time
(b) independent of time \Rightarrow Scitronomous.
(a) Circle
(b) Parabola
Ellipse
(d) Hyperbola

Attempt any two :
(a) State and prove angular momentum conservation theorem for a system of particles.
(b) Find the equation of a bead sliding on a uniformly rotates wire.
(c) Explain in brief the conservation of total energy for the system of particles.
3. Attempt the followings:
(a) Find the minimum surface of revolution about y-axis.
(b) Discuss in detail the Branchestochrone problem.

OR
$\int($ a $)$ Find the shortest distance between two point in a plane.
(b) A hoop rolling without slipping down an inclined plane then find the force of friction acting on the hoop.
4. Attempt any two :

Derive Lagrange's equations of motion for general system.
(b) Find the equations of motion in plane polar co-ordinates for a single particle in space.
(c) Show that the two body Central force motion about their C.M. can always be reduced to an equivalent are body problem.
5. Attempt any two
fy State Hamilton's variational principle and using it derive lagrange's equations of motion.
(b) Show that generalized momentum conjugate to a cyclic coordinate is conserved. Using this result derive that if component of applied torque vanishes, then the corresponding component of angular momentum is conserved
(c) A particle of mass m moves under a Central force, then show that
(i) Its orbit is plane curve.
(ii) Its areal vector sweeps out equal area in equal time.
$-(d)$ If the mass of the body is concentrated about C.M., then show that the total angular momentum of system is equal to the angular momentum of C.M plus angular momentum about C.M.

003-01.6106

M.Sc. (CBCS) - Mathemntics (Sem.-1) Examination

November-2013
MATHEMATICS
EMT-1001: CLASSICAL MECHANICS - 1

Faculty Code: 003
Subject Code : 016106
instrintions: (1) Attempt all the questions.
(2) Each question carries equal marks.

Choose the appropriare alternative/alternativas (any seven) :
(1) The linear monentum of a particle is conserved when
(a) $N=0$
(a) $F=0$
(c) $P=0$
(d) None of these
(21) The Lagrangian t equants to
d $T-V$
(b) $T+V$
(c) TV
(d) Noine of these
(3) Holonomic çenstraints are
(a) alwaty zero
(b) always negative

2y expressible in terms of algebraic equations
(d) dependent on time
(4) The mamenti of force is defined as
(i) $\mathrm{N}=\mathrm{F}$
(b) $\mathrm{N}=\mathrm{P} / \mathrm{F}$
(c) $\mathrm{N}=\mathrm{r}^{2} \times \mathrm{p}^{2}$
(9) $\mathrm{N}+1 \times \mathrm{F}$
(3) The shortest distance between two polith 10 in plang is
(a) Ellipse
(b) Oren blete
(il) Unletmed
(6) The tem aphecion reters to
(A) closest appronch to the Surn
(0) fasest approach to the Sum
(c) average distance from the axis
(d) Nonc of these
77) The spring equinox oecurs on
(a) 23^{16} March
(b) $22^{\text {nd }}$ December
(c) 21^{11} June
(d) $23^{\text {rd }}$ September
(3) The path of the motion of planet Venus around the Sun is
(a) Parabola
(2) Ellipse
(c) Hiperbola
(d) Circle
(9.) According to Kepler's third law of planetary motion
(II) $t^{2} \times x^{3}$
(b) $\mathrm{f}^{2}+\mathrm{a}^{2}$
(c) $\mathrm{s}^{2} * \mathrm{a}^{2}$
tul : 0

Any co-ordinate g, is cyelic if
(id) Lis constam
(b) $\mathrm{L}=0$
(8) Low hat contioin q,
2. Anempr toy twe

 particle.
 of monton for ghnemal system.
 partieles.

$1 S$ 3. Attempt the followings:

(a) Discuss in

relation $\ddot{x}=\left(\frac{M_{1}-M_{2}}{M_{1}+M_{2}}\right)$ problem of Atwood machine and derive the (b)

Find the ininimum surface of revolution about y-axis.

Find the equ
wire in free space. motion for a bead sliding on a uniformly rotated (b) Discuss in detail the Brachestochrone problems
4.
\qquad
Attempt any two
-.
(a)
discuss in detail
Calculus of variation. always be reduced a ariel motion of two bodies about their C.M. can
(c) Derive the equations of motion and first integrals for the two body
5. Attemprany two :
(a) Define:

003-016106

3
PTO.
(b) A particle of mass m moves under a central fort then stove that
(i) Its orbit is a plane curve.
(ii) Its area vector sweeps out equal area in equal time.
c.(c) Obtain Lagrange's equations of motion for a simple pendulum.
(d) A particle falls a distance y_{0} in a time $t_{0}=\sqrt{\frac{2 y_{0}}{g}}$. If thertistance y is
defined $:$ at timed t is $y=a t^{\prime}+b t^{2}$ then shoviriat $\int_{0} L d t$ is an

extremum for real values of the coefficientarifily when $a=0$ and $b=\frac{a}{2}$.

Q:1 Fill in the blanks : Each carries two marks)
TD The linear momentum p of the particle is as:
$+$
A) $p=0,{ }^{(b)} p+m v$
(c) $p=m / v$
(d) $p=1 / 2 m v^{2}$

i) $\frac{\partial t}{m_{i}^{2}}=0$
(b) $\frac{\partial \mathrm{L}:}{\text { (ri } i}$
($\frac{\partial L i}{\partial \psi i j}=0$
(d) $L=0$
(4) According to principle of virtual work
a) $F=9$
(b) $F_{i}=$ constant
(c) $p_{L}^{\prime}=0$ (d) $F_{i}-p_{L}=0$

According to Hamilton's variational principle.
at $\int_{11} L d t$ has a stationary value
b) $\int_{11}^{12} L d t=0$
c) $\int_{11}^{11} F d t=0$
d) None of these.
(6) Kinetic energy T in plane polar coordinates is defined as:
\qquad $+\frac{a}{} T=1 / 2 u^{\circ}\left(\frac{2}{r}+r^{2} \dot{0}\right) \quad(b) T=1 / 2 m\left(x^{2}+y^{\prime}\right)$
Pace 1 of 3

$$
T=\frac{1}{2} m\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}\right)
$$

18

c) $T=1 / 2 m x$
d) none of these
7) The potential energy V is defined as:
40-5 mg h
(b) gr
(c) $\mathrm{v}={ }^{h} /$
(d) none of these
8) The earth moves around the sum in elliptical orbit then
a) The moon is at one of the fore
b) The sun is at one of the foci
c) The sun and the moon are at the same loci.
d) Can't be predicted.
(14) According two kipper's third law

${ }_{5 \mathrm{~mm}} \mathrm{H}^{3}$
b) ram^{1}
c) $)^{12}{ }^{3}$
(d) $i=0$
(10) The shortest distance between iwo point in a plane is a
(i) Strath line
b) Ellipse © Circle
(d) 0

Q:2 Attempt tiny Two

a. Define:
ir. Haloninic constraints.
(vii) torque.
4. Explain in detail the conservation of energy for a partiele.
c. If the mass of the body i: concentrated about C.M. then shew that the oral angular momenta of tire system is equal to the angular momentum about C.M.

Q:3 Attempt the following:

Ai 4 op krolling with out rowling without slipping deon in inclined phase then find the force of friction acting on acting on the troop.

OR
(ii) End the minimum surface of revolution annul y-axis.

a) isparticle:
(i) Its orbit is a plane curve.
(ii) Lis areal vector sweeps out equal area in equal time.

S: hate Hamilton's variational principle and equal time.
techniques of calculus of variatums.s. c) Shown that the generalized ines.
ordinate is conserved: Using omentum conjugate to a cyclic cototal applied force vanishes the correspond luce that if component of Q:5 Attempt any two :
2) - Tie potential energy of a linear harmonic oscillator is $y=1 / 2 k x^{2}$ then Bad thee equation of motion using Hamilton's principle.
Obtain equations of morion for simple pendulum.
 aryetime r is. $y=a t+b r^{2}$ then show that the integral:

\qquad

Faculty

 SübjectTime : $2 \frac{1}{2}$ Hours]
Instructions : (l) Attempt
(2) Each quit

Choose the appropriate alternatives: (any seven)
(1) The moment of fores wa ed as
(8) $N=r \times F$
(B) $p=m$
(C) $\ell=r \theta$
(D) none of these

(A) time derivative 解d

(D) none of these
(3) The linear momentum of particle is conserved when
(A) $\mathrm{G}=0$
(B) $\mathrm{a}=0$
(8) $\mathrm{F}=0$
(D) none of these
(4) The angular momentum e particle is conserved when
(A) $F=0$
(B) $g=0$
(C) $\mathrm{p}=0$

L (D) none of these
(6) The Laprangon 1 equal it
(N) $\mathrm{KE}+\mathrm{P} . \mathrm{E}$
(B) Bnexpy of the system いOS KE - P.E Coifed
(D) $\mathrm{KE} /(\mathrm{P}, \mathrm{S})^{2}$
(6) Any coordinate a° is cyclic
(A) Lagrangian is constant
(D) Lagrangian does not
(C) Lagrangian is zero
(D) None of these
((1) Rhenomous constraints are (59) dependent on time
(B) independent of time
(C) may or may not depét
(D) contains cyclic cu-ording
(8) The shortest distance betwd
(A) Circle
(B) Ellipse
(C) Parabola
(9) According to Keel
$k \in \lambda$
POE)

According to Kepler's law the 1 gidluectors sweeps out.
(A) double area in constant the
(C) equal area in equal tom
(C) no area initially
(D) none of these
(10) The nature of orbit of planet heyeury around the sun is
(A) Circle
(B) Parabola
fey Ellipse
(D) Hyperbola

Attempt any two
(9) State and prove linear momentum conservation theorem for system of particles.
(b). Find the equations of motion for a bead sliding on a uniformly rotated wire in free phage:
(c) Discuss the problem of Atwood wahine and derive that $\overrightarrow{\mathrm{r}}=\left(\frac{m_{1}-m_{2}}{m_{1}+m_{2}}\right) g$
 Find the shortestyd
Discuss in detail

3 Attempt the followings:
(a) Find the minimum A hoop rolling withoy find the force of frife

4 Atlempt any two : -

Explain in brief thel system of particles
(b) If the mass of the bed then show that the Hopo is equal to the angilaty tothentum of C.M. plus angular momentiun about 6 C.M. can always be reftictid to an equivalent one body problem.

5 Attempt any two : (e) Define :
(i) Configuration space
(ii) Degrees of freeplow
(iii) Cyclic co-ordinate
(vi) Holonomic constraints
(1) Scaleronomous consely
(vi) State Hamilton's veditifonal principle

Discuss in detail the teploghues of calculus of variation.
(c) Show that the generdigetyomentum conjugate to a eyclic co-ordinate is conseryed, thang this result deduce that if component of applifd tofte vanishes the corresnonding component of angular mondentum is cons rrved.

- (2) Derive the Lagrange sydation of motion for generad

UAN-774-003 916106]

(2) The angular momenturvis deñed as
(A) $F=n a$
(B) $P=m$
(10) $L=r \times p$
(D) None of this
(9) The guantity, i is andouperved quantity provided
ract $\frac{d a}{d t}=0$.
(B) $d q=d q$
(C) $\frac{d q}{d t}=1$
(D) None of this

The linear mementum of a
(A) $P=0$
(B) $V=0$
vet $F=0$
(D) $g=0$

The angular momentum for the when:
(A) Total force is zero
(B) Total torque is zero.
(C) Velocity is zero
(D) None of this
(6) Any coordinate q_{j} is cyidic if
(A) If lagrangian contains. I_{j}

T保 If lagrangian does not cor
(C) If force is constant
(D) None of this

(A) The sum of K:E. and P.E:
(Q) The difference of K.E. and I
(C) The product of K.E. and P.E. $=\frac{1}{3}$,
(D) None of this
(8) The shortest distance between two 8
5
5
St. line
(B) Circle:
(C) Ellipse
(D) Parabola
(9)) Non-Holonomic constraints are
(A) Expressible in terms of algebric édydys.

(C) Derivable from the potential
(D) None of this

25

(10)) The nature of orbit
(A) Circular.
(B) Elliptic:
(C) Parabolic
(D) Hexagenal

2 Attempt any two :

(a) State and prop
for the systember
(0) Find the lagrap sliding on. a wife

$$
-\quad=\left(\frac{M_{1}-M_{2}}{M_{1}+M_{2}}\right)
$$

3 Attempt the following

in :
(i) Cartesian carichtaty
(ii) Plane polar co-tuptates.
3. Atternpt the following
(a) A hoop rolling withoputhetping down inclined plane then find the force of friction that g on the hoop.
(6)) Find the minimum si wite of revolution about y-axis.

Attempt any two :

(a) If the mass of the body is constrained to moue about C.M. then show that the total angular momentum of the system is equal to the angutamomentum of C.M. plus angular yomentun about C.M.
(b) Show that two body cental force motion about their C.M. can always be reduced to a ti equivalent one body problem.
(c) Explain in detail the conservation of total energy for the foster of parucles.
Airmen she two
Derive Lagrange's equatiditux fimotion for cuncetvative holonomic system. TWin.
(1) A particle of mass m moves abetter influence of central fore e then show that

- (c) Define :

(i) Its orbit is a plane
(ii) Its areal vector swee
(iD) Degrees of freedom
(ii) Configuration space
(iii) Cyclic coordinate. More over state Hamilton's it derive Lagrange's equati
Prove that generlized mom ordinate is conserved, Usia component of the applied tor component of angular moms
equal area in equal time.
\qquad

[^0]: - a) Let Y béarori-empty subset of a iopological space (x, τ)

