# Shree H.N. Shukla College of Science <br> M.Sc. (Mathematics) Sem-3 <br> IMP questions of functional analysis 

1. Every finite dimensional n.l.s over $\mathbb{K}$ is Banach space.
2. Show that $\left(\mathrm{C}[\mathrm{a}, \mathrm{b}],\|\cdot\|_{\infty}\right)$ is Banach space.
3. Show that $\left(l^{p},\|\cdot\|_{p}\right)$ is Banach space.
4. State and prove Riesz lemma.
5. State and prove Riesz-Reprasentation theorem for bounden sesquilinear mapping on Hilbert Space.
6. Let $X$ and $Y$ are norm linear spaces and $Y$ is Banach Sapce then Show that $B(X, Y)$ is Banach Space.
7. State and prove Schwarz inequality.
8. State and Prove Bessel's inequality.
9. State and Prove Hahn-Banach theorem for norm linear space.
10. An orthonormal set $M$ in Hilbert space $H$ is total in $H$ if and only if for all $x \in H$ the Perseval relation holds.
11. Let T be a bounded linear operator then
(a) $\left(x_{n}\right) \rightarrow x \Rightarrow \mathrm{~T} x_{n} \rightarrow \mathrm{Tx}$ Where $x_{n}, x \in \mathcal{D}(\mathrm{~T})$.
(b) The null space $\mathcal{N}(T)$ is closed.
12. Let $X$ be finite dimensional norm linear space then every linear operator on $X$ is bounded.
13. Let $X$ and $Y$ be a vector spaces both real or both complex. Let $T: \mathcal{D}(T) \rightarrow Y$ be a linear operator with domain $\mathcal{D}(\mathrm{T}) \subseteq \mathrm{X}$ and range $\mathcal{R}(\mathrm{T}) \subseteq Y$.Then $T^{-1}: \mathcal{D}(\mathrm{T}) \rightarrow \mathcal{R}(\mathrm{T})$ is exist if and only if $\mathrm{Tx}=0 \Rightarrow \mathrm{x}=0$.
14. Let $X$ and $Y$ be a norm linear spaces and $T: \mathcal{D}(T) \rightarrow Y$ be linear operator, where $\mathcal{D}(T) \subseteq X$. Then T is continues iff T is bounded.
15. Let $X$ and $Y$ are norm linear space. Let $\|\cdot\|: B(X, Y) \rightarrow \mathbb{R},\|T\|=\underset{\substack{x \in X \\ x \neq 0}}{ } \frac{\|x\|}{\|x\|}, T \in B(X, Y)$ then Show that $\|\cdot\|$ is norm on $B(X, Y)$.
16. Prove that every orthonormal set in inner product space is linearly independent.
17. Show that $(\mathrm{S}+\mathrm{T})^{*}=\mathrm{S}^{*}+\mathrm{T}^{*}$, Where S: $H_{1} \rightarrow H_{2}$ and $\mathrm{T}: H_{1} \rightarrow H_{2}$ are bounded linear operators and $H_{1}$ and $H_{2}$ be a Hilbert spaces.
18. Show that $(S T)^{*}=\mathrm{T}^{*} \mathrm{~S}^{*}$, Where $\mathrm{S}: \mathrm{H} \rightarrow \mathrm{H}$ and $\mathrm{T}: \mathrm{H} \rightarrow \mathrm{H}$ are bounded linear operators and H be a Hilbert space.
19. Show that $(\alpha \mathrm{T})^{*}=\bar{\alpha} \mathrm{T}^{*}$ Where T: $H_{1} \rightarrow H_{2}$ are bounded linear operators and $H_{1}$ and $H_{2}$ be a Hilbert spaces.
20. Show that $\left\langle T^{*} y, x\right\rangle=\langle\mathrm{y}, T x\rangle$ Where T : $H_{1} \rightarrow H_{2}$ are bounded linear operators and $H_{1}$ and $H_{2}$ be a Hilbert spaces.
21. Show that $\left(T^{*}\right)^{*}=T$ Where T: $H_{1} \rightarrow H_{2}$ are bounded linear operators and $H_{1}$ and $H_{2}$ be a Hilbert spaces.
22. Show that $\left\|T^{*} T\right\|=\left\|T T^{*}\right\|=\|T\|^{2}$ Where $\mathrm{T}: H_{1} \rightarrow H_{2}$ are bounded linear operators and $H_{1}$ and $H_{2}$ be a Hilbert spaces.
23. $<,>$ is inner product space on vector space $\mathrm{X} . x_{n} \rightarrow x$ and $y_{n} \rightarrow y$ in X than $\left.\left.<x_{n}, y_{n}\right\rangle \rightarrow<\mathrm{x}, \mathrm{y}\right\rangle(<,>$ is continues function on X xX$)$.
24. Prove that $\left(\mathbb{R}^{n},\|\cdot\|\right)$ is Banach space. Where $\|\cdot\|$ is Euclidean norm on $\mathbb{R}^{n}$.
25. Given example of incomplete metric space.
26.Definition: Weak convergence, Strong convergence ,Reflexive space, canonical mapping, isometry.
