

Shree H.N. Shukla College of Science M.Sc. (Mathematics) Sem-3 IMP questions of functional analysis

- 1. Every finite dimensional n.l.s over \mathbbm{K} is Banach space.
- 2. Show that $(C[a,b], \|\cdot\|_{\infty})$ is Banach space.
- 3. Show that $(l^p, \|\cdot\|_p)$ is Banach space.
- 4. State and prove Riesz lemma.
- 5. State and prove Riesz-Reprasentation theorem for bounden sesquilinear mapping on Hilbert Space.
- 6. Let X and Y are norm linear spaces and Y is Banach Sapce then Show that B(X,Y) is Banach Space.
- 7. State and prove Schwarz inequality.
- 8. State and Prove Bessel's inequality.
- 9. State and Prove Hahn-Banach theorem for norm linear space.
- 10. An orthonormal set M in Hilbert space H is total in H if and only if for all x ϵ H the Perseval relation holds.
- 11. Let T be a bounded linear operator then
 - (a) $(x_n) \to x \Rightarrow Tx_n \to Tx$ Where $x_n, x \in \mathcal{D}(T)$.
 - (b) The null space $\mathcal{N}(T)$ is closed.
- 12. Let X be finite dimensional norm linear space then every linear operator on X is bounded.
- 13. Let X and Y be a vector spaces both real or both complex. Let T: $\mathcal{D}(T) \rightarrow Y$ be a linear operator with domain $\mathcal{D}(T) \subseteq X$ and range $\mathcal{R}(T) \subseteq Y$. Then $T^{-1}: \mathcal{D}(T) \rightarrow \mathcal{R}(T)$ is exist if and only if $Tx=0 \Rightarrow x=0$.
- 14. Let X and Y be a norm linear spaces and T: $\mathcal{D}(T) \rightarrow Y$ be linear operator , where $\mathcal{D}(T) \subseteq X$. Then T is continues iff T is bounded.
- 15. Let X and Y are norm linear space. Let $\|\cdot\| : B(X,Y) \to \mathbb{R}$, $\|T\| = \sup_{\substack{x \in X \\ x \neq 0}} \frac{\|Tx\|}{\|x\|}$, $T \in B(X,Y)$ then

Show that $\|\cdot\|$ is norm on B(X,Y).

- 16. Prove that every orthonormal set in inner product space is linearly independent.
- 17. Show that $(S+T)^*=S^*+T^*$, Where S: $H_1 \rightarrow H_2$ and T: $H_1 \rightarrow H_2$ are bounded linear operators and H_1 and H_2 be a Hilbert spaces.
- 18. Show that $(ST)^* = T^* S^*$, Where S: H \rightarrow H and T: H \rightarrow H are bounded linear operators and H be a Hilbert space.
- 19. Show that $(\alpha T)^* = \overline{\alpha} T^*$ Where T: $H_1 \rightarrow H_2$ are bounded linear operators and H_1 and H_2 be a Hilbert spaces.
- 20. Show that $\langle T^*y, x \rangle = \langle y, Tx \rangle$ Where T: $H_1 \rightarrow H_2$ are bounded linear operators and H_1 and H_2 be a Hilbert spaces.
- 21. Show that $(T^*)^* = T$ Where T: $H_1 \rightarrow H_2$ are bounded linear operators and H_1 and H_2 be a Hilbert spaces.

- 22. Show that $||T^*T|| = ||TT^*|| = ||T||^2$ Where T: $H_1 \rightarrow H_2$ are bounded linear operators and H_1 and H_2 be a Hilbert spaces.
- 23. < , > is inner product space on vector space X. $x_n \to x$ and $y_n \to y$ in X than $\langle x_n, y_n \rangle \to \langle x, y \rangle (\langle, \rangle \text{ is continues function on X x X }).$
- 24. Prove that $(\mathbb{R}^n, \|\cdot\|)$ is Banach space. Where $\|\cdot\|$ is Euclidean norm on \mathbb{R}^n .
- 25. Given example of incomplete metric space.
- 26.Definition: Weak convergence , Strong convergence , Reflexive space, canonical mapping, isometry .