Shree H.N. Shukla Group of Colleges

M.Sc. SEMESTER 2 Sub. Code: CMT-2001

Core Sub. 1: Abstract Algebra 2

Question Bank

1) If a field E is a finite extension field of a field F, then E is an algebraic extension of \mathbf{F}.
2) Prove that every finite extenstion is an algebraic extension
3) Let $\mathrm{E} \mid \mathrm{F}$ and $\mathrm{K} \mid \mathrm{E}$ both are algebraic extensions . Prove that $\mathrm{K} \mid \mathrm{F}$ is also an algebraic extenstion .
4) Prove that $\mathbb{Q}(\sqrt{2}, \sqrt{3}, \ldots \ldots \sqrt{p}, \ldots) \mid \mathbb{Q}$ is an infinite algebraic extension.
5) Let $\mathrm{p}(\mathrm{x}) \in \mathrm{F}[\mathrm{x}]$ be an irreducible polynomial and $\operatorname{deg}(\mathrm{p}(\mathrm{x}))=\mathrm{n}$. Let $\mathrm{E} \mid$ F be an extension such that $\alpha \in \mathrm{F}$ and α is a root of $\mathrm{p}(\mathrm{x})$. Prove that $\mathrm{F}[\alpha]$ $=\mathrm{F}(\alpha), \quad[\mathrm{F}(\alpha): \mathrm{F}]=\mathrm{n}$ and $\left\{1, \alpha, \alpha^{2}, \ldots . \alpha^{n-1}\right\}$ is a basis of $\mathrm{F}(\alpha)$ over F .
6) Let $\mathrm{f}(\mathrm{x}) \in \mathrm{F}[\mathrm{x}]$ be an irreducible polynomial .Prove that α is a multiple root of $f(x)$ if and only if $f^{\prime}(x)=0$ (All the coefficients of $f^{\prime}(x)$ are multiple of Char F.)
7) Let char $K=p>0$ and $f(x) \in K[x]$ be an irreducible polynomial .Prove that $f(x)$ has a multiple root if and only if $f(x)=g\left(x^{p}\right)$, for some $g(x) \in$ $\mathrm{K}[\mathrm{x}]$.
8) Let F be a finite field. Prove that $F^{*}=F \backslash\{0\}$ is a cyclic group under multiplication .

Shree H.N. Shukla Group of Colleges

9) Let (Ni) i $\in \Lambda$ be a family of R-submodules of an R-module M. Prove that $\bigcap_{\mathrm{i} \in \Lambda} N_{i}$ is also an R - submodule of M .

10) Using Eisenstein criterian prove that $\mathrm{g}(\mathrm{x})=1+\mathrm{x}+\mathrm{x}^{2}+\ldots .+\mathrm{x}^{p-1}$ (p is prime) and $g(x+1)$ both are irreducible over $\mathbb{Q}[x]$.
11) Let F be a field .Prove that the prime subfield of F is either isomorphic to \mathbb{Q} or it is isomorphic to $\mathbb{Z} p$, for some prime p .

12) Let R be a ring with unity. Prove that an R -module M is cyclic iff M $\cong R / I$, for some left ideal I of R.
13) State and prove primitive element theorem .
14) Let f: M N be an R-homomorphism on R-modules. Prove that kerf and $f(M)$ are R -submodules of M and N respectively.

15) Define an exact infinite sequence of R -homomorphisms of R modules. Suppose following diagram of R-modules and Rhomomorphism is commutative and it has exact rows.

Prove that (i) β is one-one if $\alpha, r, \mathrm{f}^{\text {‘ }}$ all are one -one maps and (ii) β is onto if $\alpha, \mathrm{r}, \mathrm{g}$ all are onto maps .

