

Shree H.N. Shukla Group of Colleges

## M.Sc. SEMESTER 2 Sub. Code: CMT-2001

## Core Sub. 1: Abstract Algebra 2

## **Question Bank**

1) If a field E is a finite extension field of a field F, then E is an algebraic extension of F.

2) Prove that every finite extension is an algebraic extension

3) Let  $E \mid F$  and  $K \mid E$  both are algebraic extensions .Prove that  $K \mid F$  is also an algebraic extension .

4) Prove that  $\mathbb{Q}(\sqrt{2}, \sqrt{3}, \dots, \sqrt{p}, \dots) \mid \mathbb{Q}$  is an infinite algebraic extension .

5) Let  $p(x) \in F[x]$  be an irreducible polynomial and deg(p(x)) = n. Let  $E \mid F$  be an extension such that  $\alpha \in F$  and  $\alpha$  is a root of p(x). Prove that  $F[\alpha] = F(\alpha)$ ,  $[F(\alpha) : F] = n$  and  $\{1, \alpha, \alpha^2, ..., \alpha^{n-1}\}$  is a basis of  $F(\alpha)$  over F.

6) Let  $f(x) \in F[x]$  be an irreducible polynomial .Prove that  $\alpha$  is a multiple root of f(x) if and only if f'(x) = 0 (All the coefficients of f'(x) are multiple of Char F.)

7) Let char K = p > 0 and  $f(x) \in K[x]$  be an irreducible polynomial .Prove that f(x) has a multiple root if and only if  $f(x) = g(x^{p})$ , for some  $g(x) \in K[x]$ .

8) Let F be a finite field . Prove that  $F^{*}$  =  $F \setminus \{0\}$  is a cyclic group under multiplication .



## Shree H.N. Shukla Group of Colleges

9) Let (Ni)  $i \in \Lambda$  be a family of R-submodules of an R-module M. Prove that  $\bigcap_{i \in \Lambda} N_i$  is also an R- submodule of M.

10) Using Eisenstein criterian prove that  $g(x) = 1+x+x^2+...+x^{p-1}$  (p is prime ) and g(x+1) both are irreducible over  $\mathbb{Q}[x]$ .

11) Let F be a field .Prove that the prime subfield of F is either isomorphic to  $\mathbb{Q}$  or it is isomorphic to  $\mathbb{Z}p$ , for some prime p.

12 ) Let R be a ring with unity . Prove that an R-module M is cyclic iff M  $\cong$  R/ I , for some left ideal I of R .

13) State and prove primitive element theorem .

14) Let f: M N be an R-homomorphism on R- modules . Prove that kerf and f(M) are R-submodules of M and N respectively .

15) Define an exact infinite sequence of R-homomorphisms of Rmodules . Suppose following diagram of R-modules and Rhomomorphism is commutative and it has exact rows.



Prove that (i)  $\beta$  is one-one if  $\alpha$ , r, f ' all are one –one maps and (ii)  $\beta$  is onto if  $\alpha$ , r, g all are onto maps.