SHREE H. N. SHUKLA GROUP OF COLLEGES

M.Sc. (Mathematics) Semester-4

PRELIMS TEST

-	: Integration Theory _/ /	Marks: 70 Time: 2.5 Hours
Q-1 Answer any seven questions. (14)		
1)	The lebesuge measure on $\mathbb R$ is	
2)	The cumulative function F of a finite barie meas on the real line is	ure
3)	If (X, A, μ) is a complete measure space then $\{s \mid s \mid t \mid $	
4)	Every closed set in a metric set is a	_•
5)	Define μ^* -measurable subset of a set x with our measure μ^* . Prove that every $E \subset X$ with $\mu^*E=0$ μ^* -measurable.	
6)	Prove that the product of two σ -finite complete measures σ -finite.	res
7)	If $f \in L^1(X, \mathcal{A}, \mu)$ then prove that $f(x)$ is finite are $x \in L^1(X, \mathcal{A}, \mu)$	X.
8)	If x is a to topological space and $E \subset X$ then find sup	$p(x_E)$.
9)	Give an example of a space which is locally compact not compact. Justify.	but
10)	Define σ -finite measure on a measurable space (X and give an example of a σ -finite measure.	(A,A)

Q-2 Answer any two question.

- State and prove Hahn decomposition theorem. 1)
- Define Jordan decomposition of a signed measure on a 2) measurable space and prove that it is unique.
- If μ_1, μ_2 are two measures on a measurable space (X, \mathcal{I}) 3) and at least one of them is finite then prove that $\mu_1 - \mu_2$ is a signed measure on (X, \mathcal{I}) .

Q-3 Answer any two questions.

(14)

- 1) Define:
 - (i) a locally compact and
 - a hausdorff space. Is the set of rationals in \mathbb{R} is locally compact?
- 2) Let X is a locally compact hausdroff space. Prove that Ba(X) = the σ -algebra generated by compact G_{δ} sets in X.
- 3) Define σ-bdd set in a locally compact hausdorff space X. If $E \in Ba(X)$ then prove that either E or X \ E is σ -bdd.

Q-4 Answer any two questions.

- 1) If X is a locally compact separable metric space then prove that Bo(X) = Ba(X).
- Define σ-compact set in a locally compact Hausdorff 2) space. Prove that every σ -compact open set in a locally compact Hausdorff space is a Baire set.
- 3) Give an example of baire measure on a locally compact Hausdorff space which is not regular. Justify.

(14)

Q-5 Answer any two questions.

- Prove that if (X,A) is a measurable space and $f:X\to [0,\infty]$ be measurable then there exists a sequence $\{S_n\}_{n=1}^\infty$ of simple measurable function such that
 - (i) $0 \le S_1 \le S_2 \le \dots \le S_n \dots \le f$; on X.
 - (ii) $\lim_{n\to\infty} S_n = f(x); \forall x \in X.$
- Prove that if X be a countable set and μ be the counting measure then $L^{P}(\mu) \cong l^{P}; \forall 1 \leq P < \infty$.
- Define Baire measure on the real line. Prove that the cumulative distribution function "F" of a finite signed measure on the real line is bdd, monotonically increasing and $\lim_{x\to -\infty} f(x) = 0$.

------ ALL THE BEST -----