
SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

1

Shree H.N.Shukla college 2

vaishali nagar

Near Amrapali Under Bridge,

Raiya road

Rajkot

Ph No:-0281 2440478

Shree H.N.Shukla college 3

vaishali nagar

Near Amrapali Under Bridge,

Raiya road

Rajkot

Ph No:-0281 2440478

MSCIT SEM-3 ANGULARJS

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

2

Unit : 3
Dependency Injection and service in Angular

index
 Understanding Dependency Injection (DI)

 Services

 Creating a Service

 Injecting the service into components

 Understanding Dependency Hierarchical Injector

 Injecting a Service into other services

 Service Injection Context

 Rest Calls with HttpClient

 Building Angular Project

 (1)Understanding Dependency Injection (DI)
Dependency injection, or DI, is one of the fundamental concepts in Angular. DI is wired

into the Angular framework and allows classes with Angular decorators, such as

Components, Directives, Pipes, and Injectables, to configure dependencies that they

need.

Two main roles exist in the DI system: dependency consumer and dependency provider.

Angular facilitates the interaction between dependency consumers and dependency

providers using an abstraction called Injector. When a dependency is requested, the

injector checks its registry to see if there is an instance already available there. If not, a

new instance is created and stored in the registry. Angular creates an application-wide

injector (also known as "root" injector) during the application bootstrap process, as well

as any other injectors as needed. In most cases you don't need to manually create

injectors, but you should know that there is a layer that connects providers and

consumers.

https://angular.io/guide/glossary#injector

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

3

This topic covers basic scenarios of how a class can act as a dependency. Angular also

allows you to use functions, objects, primitive types such as string or Boolean, or any

other types as dependencies. For more information, see Dependency providers.

Providing dependency

Imagine there is a class called HeroService that needs to act as a dependency in a

component.

The first step is to add the @Injectable decorator to show that the class can be injected.

content_copy@Injectable()

class HeroService {}

The next step is to make it available in the DI by providing it. A dependency can be

provided in multiple places:

 At the Component level, using the providers field of the @Component decorator.

In this case the HeroService becomes available to all instances of this component

and other components and directives used in the template. For example:

content_copy@Component({

 selector: 'hero-list',

 template: '...',

 providers: [HeroService]

})

class HeroListComponent {}

When you register a provider at the component level, you get a new instance of the

service with each new instance of that component.

 At the NgModule level, using the providers field of the @NgModule decorator.

In this scenario, the HeroService is available to all components, directives, and

pipes declared in this NgModule or other NgModule which is within the same

ModuleInjector applicable for this NgModule. When you register a provider with

https://angular.io/guide/dependency-injection-providers
https://angular.io/api/core/Injectable
https://angular.io/api/core/Component
https://angular.io/api/core/Component
https://angular.io/api/core/NgModule

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

4

a specific NgModule, the same instance of a service is available to all applicable

components, directives and pipes. To understand all edge-cases, see Hierarchical

injectors. For example:

content_copy@NgModule({

 declarations: [HeroListComponent]

 providers: [HeroService]

})

class HeroListModule {}

 At the application root level, which allows injecting it into other classes in the

application. This can be done by adding the providedIn: 'root' field to

the @Injectable decorator:

content_copy@Injectable({

 providedIn: 'root'

})

class HeroService {}

When you provide the service at the root level, Angular creates a single, shared instance

of the HeroService and injects it into any class that asks for it. Registering the provider

in the @Injectable metadata also allows Angular to optimize an app by removing the

service from the compiled application if it isn't used, a process known as tree-shaking.

Injecting a dependency

The most common way to inject a dependency is to declare it in a class constructor.

When Angular creates a new instance of a component, directive, or pipe class, it

determines which services or other dependencies that class needs by looking at the

constructor parameter types. For example, if the HeroListComponent needs

the HeroService, the constructor can look like this:

content_copy@Component({ … })

https://angular.io/guide/hierarchical-dependency-injection
https://angular.io/guide/hierarchical-dependency-injection
https://angular.io/api/core/NgModule
https://angular.io/api/core/Injectable
https://angular.io/api/core/Injectable
https://angular.io/api/core/Injectable
https://angular.io/api/core/Component

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

5

class HeroListComponent {

 constructor(private service: HeroService) {}

}

Another option is to use the inject method:

content_copy@Component({ … })

class HeroListComponent {

 private service = inject(HeroService);

}

When Angular discovers that a component depends on a service, it first checks if the

injector has any existing instances of that service. If a requested service instance doesn't

yet exist, the injector creates one using the registered provider, and adds it to the

injector before returning the service to Angular.

When all requested services have been resolved and returned, Angular can call the

component's constructor with those services as arguments.

https://angular.io/api/core/inject
https://angular.io/api/core/Component

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

6

 (2)Services

AngularJS services are substitutable objects that are wired together using dependency

injection (DI). You can use services to organize and share code across your app.

AngularJS services are:

 Lazily instantiated – AngularJS only instantiates a service when an application

component depends on it.

 Singletons – Each component dependent on a service gets a reference to the

single instance generated by the service factory.

AngularJS offers several useful services (like $http), but for most applications you'll

also want to create your own.

 Using a Service
To use an AngularJS service, you add it as a dependency for the component (controller,

service, filter or directive) that depends on the service. AngularJS's dependency

injection subsystem takes care of the rest.

 Edit in Plunker

index.htmlscript.jsprotractor.js

<div id="simple" ng-controller="MyController">

 <p>Let's try this simple notify service, injected into the controller...</p>

 <input ng-init="message='test'" ng-model="message" >

 <button ng-click="callNotify(message);">NOTIFY</button>

 <p>(you have to click 3 times to see an alert)</p>

</div>

https://docs.angularjs.org/guide/di
https://docs.angularjs.org/guide/di
https://docs.angularjs.org/api/ng/service/$http
https://docs.angularjs.org/guide/services#creating-services
https://docs.angularjs.org/guide/di
https://docs.angularjs.org/guide/di
https://docs.angularjs.org/
https://docs.angularjs.org/
https://docs.angularjs.org/

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

7

 (3)Creating Services
Application developers are free to define their own services by registering the service's

name and service factory function, with an AngularJS module.

The service factory function generates the single object or function that represents the

service to the rest of the application. The object or function returned by the service is

injected into any component (controller, service, filter or directive) that specifies a

dependency on the service.

 Registering Services

Services are registered to modules via the Module API. Typically you use the Module

factory API to register a service:

var myModule = angular.module('myModule', []);

myModule.factory('serviceId', function() {

 var shinyNewServiceInstance;

 // factory function body that constructs shinyNewServiceInstance

 return shinyNewServiceInstance;

});

Note that you are not registering a service instance, but rather a factory function that

will create this instance when called.

 Dependencies

Services can have their own dependencies. Just like declaring dependencies in a

controller, you declare dependencies by specifying them in the service's factory

function signature.

For more on dependencies, see the dependency injection docs.

https://docs.angularjs.org/api/ng/type/angular.Module
https://docs.angularjs.org/api/ng/type/angular.Module#factory
https://docs.angularjs.org/api/ng/type/angular.Module#factory
https://docs.angularjs.org/guide/di

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

8

The example module below has two services, each with various dependencies:

var batchModule = angular.module('batchModule', []);

/**

 * The `batchLog` service allows for messages to be queued in memory and flushed

 * to the console.log every 50 seconds.

 *

 * @param {*} message Message to be logged.

 */

batchModule.factory('batchLog', ['$interval', '$log', function($interval, $log) {

 var messageQueue = [];

 function log() {

 if (messageQueue.length) {

 $log.log('batchLog messages: ', messageQueue);

 messageQueue = [];

 }

 }

 // start periodic checking

 $interval(log, 50000);

 return function(message) {

 messageQueue.push(message);

 }

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

9

}]);

/**

 * `routeTemplateMonitor` monitors each `$route` change and logs the current

 * template via the `batchLog` service.

 */

batchModule.factory('routeTemplateMonitor', ['$route', 'batchLog', '$rootScope',

 function($route, batchLog, $rootScope) {

 return {

 startMonitoring: function() {

 $rootScope.$on('$routeChangeSuccess', function() {

 batchLog($route.current ? $route.current.template : null);

 });

 }

 };

 }]);

In the example, note that:

 The batchLog service depends on the built-in $interval and $log services.

 The routeTemplateMonitor service depends on the built-in $route service and our

custom batchLog service.

 Both services use the array notation to declare their dependencies.

 The order of identifiers in the array is the same as the order of argument names in

the factory function.

https://docs.angularjs.org/api/ng/service/$interval
https://docs.angularjs.org/api/ng/service/$log
https://docs.angularjs.org/api/ngRoute/service/$route

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

10

 Registering a Service with $provide

You can also register services via the $provide service inside of a

module's config function:

angular.module('myModule', []).config(['$provide', function($provide) {

 $provide.factory('serviceId', function() {

 var shinyNewServiceInstance;

 // factory function body that constructs shinyNewServiceInstance

 return shinyNewServiceInstance;

 });

}]);

This technique is often used in unit tests to mock out a service's dependencies.

 Unit Testing

The following is a unit test for the notify service from the Creating AngularJS

Services example above. The unit test example uses a Jasmine spy (mock) instead of a

real browser alert.

var mock, notify;

beforeEach(module('myServiceModule'));

beforeEach(function() {

 mock = {alert: jasmine.createSpy()};

 module(function($provide) {

 $provide.value('$window', mock);

 });

https://docs.angularjs.org/api/auto/service/$provide
https://docs.angularjs.org/guide/services#creating-services
https://docs.angularjs.org/guide/services#creating-services

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

11

 inject(function($injector) {

 notify = $injector.get('notify');

 });

});

it('should not alert first two notifications', function() {

 notify('one');

 notify('two');

 expect(mock.alert).not.toHaveBeenCalled();

});

it('should alert all after third notification', function() {

 notify('one');

 notify('two');

 notify('three');

 expect(mock.alert).toHaveBeenCalledWith("one\ntwo\nthree");

});

it('should clear messages after alert', function() {

 notify('one');

 notify('two');

 notify('third');

 notify('more');

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

12

 notify('two');

 notify('third');

 expect(mock.alert.calls.count()).toEqual(2);

 expect(mock.alert.calls.mostRecent().args).toEqual(["more\ntwo\nthird"]);

});

 Introduction

In this article, we are going to explore the steps needed to create services in Angular

applications along with the concept of dependency injection.

What is dependecy Injection and why do we use it ?

Dependency Injection (DI) is a mechanism where the required resources will be

injected into the code automatically. Angular comes with a in-built dependency

injection subsystem.

 DI allows developers to reuse the code across application.

 DI makes the application development and testing much easier.

 DI makes the code loosely coupled.

 DI allows the developer to ask for the dependencies from Angular. There is no

need for the developer to explicitly create/instantiate them.

What is Service and why do we use it?

 A service in Angular is a class which contains some functionality that can be

reused across the application. A service is a singleton object. Angular services are a

mechanism of abstracting shared code and functionality throughout the application.

 Angular Services come as objects which are wired together using dependency

injection.

 Angular provides a few inbuilt services. We can also create custom services.

Why Services?

 Services can be used to share the code across components of an application.

 Services can be used to make HTTP requests.

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

13

Creating a Service

Create a service class using the following command.

1. ng generate service Article

The above command will create a service class (article.service.ts) as shown below.

1. import { Injectable } from '@angular/core';

2.

3. @Injectable({

4. providedIn: 'root'

5. })

6. export class ArticleService {

7.

8. constructor() { }

9. }

@Injectable() decorator makes the class injectable into application components.

Providing a Service

Services can be provided in an Angular applications in any of the following ways:

The first way to register service is to specify providedIn property using @Injectable

decorator. This property is added by default when you generate a service using Angular

CLI.

1. import { Injectable } from '@angular/core';

2.

3. @Injectable({

4. providedIn: 'root'

5. })

6. export class ArticleService {

7.

8. constructor() { }

9. }

Line 4: providedIn property registers articleService at the root level (app module).

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

14

When the ArticleService is provided at the root level, Angular creates a singleton

instance of the service class and injects the same instance into any class that uses this

service class. In addition, Angular also optimizes the application if registered through

providedIn property by removing the service class if none of the components use it.

There is also a way to limit the scope of the service class by registering it in the

providers' property inside @Component decorator. Providers in component decorator

and module decorator are independent. Providing a service class inside component

creates a separate instance for that component and its nested components.

Add the below code in app.components.ts,

1. import { Component } from '@angular/core';

2. import { ArticleService } from './article.service';

3. @Component({

4. selector: 'app-root',

5. templateUrl: './app.component.html',

6. styleUrls: ['./app.component.css'],

7. providers : [ArticleService]

8. })

9. export class AppComponent {

10. title = 'FormsProject';

11. }

Services can also be provided across the application by registering it using providers

property in @Ngmodule decorator of any module.

1. import { BrowserModule } from '@angular/platform-browser';

2. import { NgModule } from '@angular/core';

3. import { ReactiveFormsModule } from '@angular/forms';

4. import { AppRoutingModule } from './app-routing.module';

5. import { AppComponent } from './app.component';

6. import {Form, FormsModule} from '@angular/forms';

7. import { ArticleFormComponent } from './article-form/article-form.component';

8. import { RegistrationFormComponent } from './registration-form/registration-

form.component';

9. import { ArticleService } from './article.service';

10. @NgModule({

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

15

11. declarations: [

12. AppComponent,

13. ArticleFormComponent,

14. RegistrationFormComponent

15.],
16. imports: [

17. BrowserModule,

18. AppRoutingModule,

19. FormsModule,

20. ReactiveFormsModule

21.],
22. providers: [ArticleService],

23. bootstrap: [AppComponent]

24. })

25. export class AppModule { }

Line 22: When the service class is added in the providers property of the root module,

all the directives and components will have access to the same instance of the service.

Injecting a Service

The only way to inject a service into a component/directive or any other class is through

a constructor. Add a constructor in a component class with service class as an argument

as shown below,

Here, ArticleService will be injected into the component through constructor injection

by the framework.

1. import { Component } from '@angular/core';

2. import { ArticleService } from './article.service';

3. @Component({

4. selector: 'app-root',

5. templateUrl: './app.component.html',

6. styleUrls: ['./app.component.css'],

7. providers : [ArticleService]

8. })

9. export class AppComponent {

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

16

10. title = 'FormsProject';

11.
12. constructor(private articleService: ArticleService){ }

13. }

Problem Statement

Create an Article Component which fetches article details like id, name and displays

them on the page in a list format. Store the article details in an array and fetch the data

using a custom service.

Demosteps

Create ArticleComponent by using the following CLI command

1. ng generate component Article

Create a file with name Article.ts under book folder and add the following code.

1. export class Article {

2. id: number;

3. name: string;

4. }

Create a file with name Article-data.ts under book folder and add the following code.

1. import {Article} from './Article';

2. export var ARTICLES: Article[] = [

3. { "id": 1, "name": "Angular Basic" },

4. { "id": 2, "name": "Template in Angular" },

5. { "id": 3, "name": "Nested component" },

6. { "id": 4, "name": "Reactive component" },

7. { "id": 5, "name": "Change detection technique" }

8.];

Create a service called ArticleService under book folder using the following CLI

command,

1. ng generate service Article

Add the following code in article.service.ts

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

17

1. import { Injectable } from '@angular/core';

2. import {ARTICLES} from './Article-data';

3. import {Article} from './Article';

4.

5. @Injectable({

6. providedIn: 'root'

7. })

8. export class ArticleService {

9.

10. getArticles ()

11. {

12. return ARTICLES;

13. }

14. }

Add the following code in article.component.ts file

1. import { Component, OnInit } from '@angular/core';

2. import {ArticleService} from './article.service';

3. import { Article } from './Article';

4. @Component({

5. selector: 'app-article',

6. templateUrl: './article.component.html',

7. styleUrls: ['./article.component.css']

8. })

9. export class ArticleComponent implements OnInit {

10. articles : Article[];

11.
12. constructor(private articelService : ArticleService) { }

13. getArticles()

14. {

15. this.articles=this.articelService.getArticles()

16. }

17. ngOnInit() {

18. this.getArticles()

19. }

20. }

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

18

Write the below-given code in article.component.html

1. <h2>My Articles</h2>

2. <ul class="Articles">

3. <li *ngFor="let article of Articles">

4. {{article.id}} {{article.name}}

5.

6.

Add the following code in article.component.css which has styles for books.

1. .Articles {

2. margin: 0 0 2em 0;

3. list-style-type: none;

4. padding: 0;

5. width: 15em;

6. }

7. .Articles li {

8. cursor: pointer;

9. position: relative;

10. left: 0;

11. background-color: #EEE;

12. margin: .5em;

13. padding: .3em 0;

14. height: 1.6em;

15. border-radius: 4px;

16. }

17. .Articles li:hover {

18. color: #607D8B;

19. background-color: #DDD;

20. left: .1em;

21. }

22. .Articles .badge {

23. display: inline-block;

24. font-size: small;

25. color: white;

26. padding: 0.8em 0.7em 0 0.7em;

27. background-color: #607D8B;

28. line-height: 1em;

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

19

29. position: relative;

30. left: -1px;

31. top: -4px;

32. height: 1.8em;

33. margin-right: .8em;

34. border-radius: 4px 0 0 4px;

35. }

Add the following code in app.component.html.

<app-article></app-article>

 (4)Injecting the service into components

Service is a special class in Angular that is primarily used for inter-component

communication. It is a class having a narrow & well-defined purpose that should

perform a specific task. The function, any value, or any feature which may application

required, are encompassed by the Service. In other words, sometimes, there are

components that need a common pool to interact with each other mostly for data or

information procurement, & Service makes it possible. The two (or more) components

may or may not be related to each other. That means there may exist a parent-child

relationship or nothing at all.

Basically, Service helps to organize & share the business logic, data model & functions

with various components in the application, & it gets instantiated only once in the

lifecycle of the application. For this, Services is written only once & can be injected

into the different components, which use that particular Services.

Services and other dependencies are injected directly into the constructor of the

component like this:

constructor(private _myService: MyService) {

}

By doing this, we are actually creating an instance of the service, which means we have

to access all the public variables and methods of the service.

Syntax: To create a new service, we can use the below command:

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

20

// Generate service

ng generate sservice my-custom-service

Injecting a service into a component is pretty straightforward. For instance, suppose we

have a service called MyCustomService. This is how we can inject it into a component:

 MyCustomComponent.ts

 Javascript

import {... } from "@angular/core";

import { MyCustomService } from "../...PATH";

@Component({

 selector: "...",

 templateUrl: "...",

 styleUrls: ["..."],

})

export class MyCustomComponent {

 // INJECTING SERVICE INTO THE CONSTRUCTOR

 constructor(private _myCustomService: MyCustomService) { }

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

21

 // USING THE SERVICE MEMBERS

 this._myCustomService.sampleMethod();

}

Before we proceed to inject the Service into the Component, we need to set up as many

Components, as required. Please refer to the Components in Angular article for the

detailed installation of the components in the application. Now, we have everything that

we need. Since this demo is particularly for service injection.

This may not make any sense until and unless we get our hands dirty. So let’s quickly

create a service and see how it is injected and can be accessed easily. For this, we will

create two simple custom components, let’s say, Ladies and Gentlemen. There is no

parent-child relationship between these two components. Both are absolutely

independent. Gentlemen will greet Ladies with “Good Morning” with the click of a

button. For this, we will use a service that will interact between the two components.

We will call it InteractionService. First thing first, we will create our 2 components and

1 service. We will now create the first component using the following command:

ng generate component gentlemen

Quickly create our last component:

ng generate component ladies

Project Structure: The following structure will appear after completing the installation

procedure:

Example: This example describes the injection of Service in the angular 6 components.

 interaction.service.ts

 Javascript

import { Injectable } from '@angular/core';

https://www.geeksforgeeks.org/components-in-angular-8/

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

22

import { Subject } from 'rxjs';

@Injectable({

 providedIn: 'root'

})

export class InteractionService {

 private _messageSource = new Subject<string>();

 greeting$ = this._messageSource.asObservable();

 sendMessage(message: string) {

 this._messageSource.next(message);

 }

}

This has been done. We will now inject this service into both our components.

 gentlemen.component.html

 HTML

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

23

<h1>GeeksforGeeks</h1>

<h3>

 Injecting the Service in Angular 6 Component

</h3>

<p>I am a Gentleman</p>

<button (click)="greetLadies()">

 Greet1

</button>

<button (click)="greetLadies1()">

 Greet2

</button>

 gentlemen.component.ts

 Javascript

import { Component, OnInit } from '@angular/core';

import { InteractionService }

 from "../interaction.service";

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

24

@Component({

 selector: 'app-gentlemen',

 templateUrl: './gentlemen.component.html',

 styleUrls: ['./gentlemen.component.css']

})

export class GentlemenComponent {

 // SERVICE INJECTION

 constructor(private _interactionService: InteractionService) { }

 greetLadies() {

 this._interactionService.sendMessage("Good Morning");

 }

 greetLadies1() {

 this._interactionService.sendMessage("Good Evening");

 }

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

25

}

 gentleman.component.css

 CSS

h1 {

 color: green;

}

 ladies.component.ts:

 Javascript

import { Component, OnInit } from '@angular/core';

import { InteractionService } from "../interaction.service";

@Component({

 selector: 'app-ladies',

 templateUrl: './ladies.component.html',

 styleUrls: ['./ladies.component.css']

})

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

26

export class LadiesComponent implements OnInit {

 // SERVICE INJECTION

 constructor(private _interactionService: InteractionService) { }

 ngOnInit() {

 this._interactionService.greeting$.subscribe(message => {

 console.log(message);

 })

 }

}

 app.component.html

 HTML

<app-gentlemen></app-gentlemen>

<app-ladies></app-ladies>

 app.component.ts

 Javascript

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

27

import { Component } from '@angular/core';

@Component({

 selector: 'app-root',

 templateUrl: './app.component.html',

 styleUrls: ['./app.component.css']

})

export class AppComponent {

 title = 'MyProject';

}

 app.module.ts

 Javascript

import { NgModule } from '@angular/core';

import { BrowserModule }

 from '@angular/platform-browser';

import { AppComponent } from './app.component';

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

28

import { GentlemenComponent }

 from './gentlemen/gentlemen.component';

import { LadiesComponent }

 from './ladies/ladies.component';

@NgModule({

 declarations: [

 AppComponent,

 GentlemenComponent,

 LadiesComponent

],

 imports: [

 BrowserModule

],

 providers: [],

 bootstrap: [AppComponent]

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

29

})

export class AppModule { }

This is how we can inject and use the service to interact between components. We just

saw a use case of service injection.

 (5)Understanding Dependency Hierarchical Injector
Hierarchical injectors

Injectors in Angular have rules that you can leverage to achieve the desired visibility of

injectables in your applications. By understanding these rules, you can determine in

which NgModule, Component, or Directive you should declare a provider.

NOTE:

This topic uses the following pictographs.

HTML ENTITIES PICTOGRAPHS
🌺 red hibiscus (🌺)
🌺 sunflower (🌺)
🌺 tulip (🌺)
🌺 fern (🌺)
🌺 maple leaf (🌺)
🌺 whale (🌺)
🌺 dog (🌺)
🌺 hedgehog (🌺)

The applications you build with Angular can become quite large, and one way to

manage this complexity is to split up the application into many small well-encapsulated

modules, that are by themselves split up into a well-defined tree of components.

There can be sections of your page that works in a completely independent way than the

rest of the application, with its own local copies of the services and other dependencies

that it needs. Some of the services that these sections of the application use might be

shared with other parts of the application, or with parent components that are further up

in the component tree, while other dependencies are meant to be private.

With hierarchical dependency injection, you can isolate sections of the application and

give them their own private dependencies not shared with the rest of the application, or

have parent components share certain dependencies with its child components only but

not with the rest of the component tree, and so on. Hierarchical dependency injection

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

30

enables you to share dependencies between different parts of the application only when

and if you need to.

Types of injector hierarchies

Injectors in Angular have rules that you can leverage to achieve the desired visibility of

injectables in your applications. By understanding these rules, you can determine in

which NgModule, Component, or Directive you should declare a provider.

Angular has two injector hierarchies:

INJECTOR

HIERARCHIES
DETAILS

ModuleInjector hierarchy Configure a ModuleInjector in this hierarchy using

an @NgModule() or @Injectable() annotation.
ElementInjector hierarchy Created implicitly at each DOM element. An ElementInjector is empty by default

unless you configure it in the providers property
on @Directive() or @Component().

ModuleInjector

The ModuleInjector can be configured in one of two ways by using:

 The @Injectable() providedIn property to refer to root or platform

 The @NgModule() providers array

TREE-SHAKING AND @INJECTABLE()

Using the @Injectable() providedIn property is preferable to using

the @NgModule() providers array. With @Injectable() providedIn, optimization tools

can perform tree-shaking, which removes services that your application isn't using. This

results in smaller bundle sizes.

Tree-shaking is especially useful for a library because the application which uses the

library may not have a need to inject it. Read more about tree-shakable

providers in Introduction to services and dependency injection.

ModuleInjector is configured by

the @NgModule.providers and NgModule.imports property. ModuleInjector is a

flattening of all the providers arrays that can be reached by following

the NgModule.imports recursively.

Child ModuleInjector hierarchies are created when lazy loading other @NgModules.

Provide services with the providedIn property of @Injectable() as follows:

https://angular.io/api/core/NgModule
https://angular.io/api/core/Injectable
https://angular.io/api/core/Directive
https://angular.io/api/core/Component
https://angular.io/api/core/Injectable
https://angular.io/api/core/NgModule
https://angular.io/api/core/Injectable
https://angular.io/api/core/NgModule
https://angular.io/api/core/Injectable
https://angular.io/guide/architecture-services#providing-services
https://angular.io/guide/architecture-services#providing-services
https://angular.io/guide/architecture-services
https://angular.io/api/core/NgModule#providers
https://angular.io/api/core/NgModule#imports
https://angular.io/api/core/NgModule#imports
https://angular.io/api/core/Injectable

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

31

content_copyimport { Injectable } from '@angular/core';

@Injectable({

 providedIn: 'root' // <--provides this service in the root ModuleInjector

})

export class ItemService {

 name = 'telephone';

}

The @Injectable() decorator identifies a service class. The providedIn property

configures a specific ModuleInjector, here root, which makes the service available in

the root ModuleInjector.

Platform injector

There are two more injectors above root, an

additional ModuleInjector and NullInjector().

Consider how Angular bootstraps the application with the following in main.ts:

content_copyplatformBrowserDynamic().bootstrapModule(AppModule).then(ref

=> {…})

The bootstrapModule() method creates a child injector of the platform injector which is

configured by the AppModule. This is the root ModuleInjector.

The platformBrowserDynamic() method creates an injector configured by

a PlatformModule, which contains platform-specific dependencies. This allows multiple

applications to share a platform configuration. For example, a browser has only one

URL bar, no matter how many applications you have running. You can configure

additional platform-specific providers at the platform level by

supplying extraProviders using the platformBrowser() function.

https://angular.io/api/core/Injectable
https://angular.io/api/core/Injectable
https://angular.io/api/core/Injectable
https://angular.io/api/platform-browser-dynamic/platformBrowserDynamic
https://angular.io/api/platform-browser-dynamic/platformBrowserDynamic
https://angular.io/api/platform-browser/platformBrowser

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

32

The next parent injector in the hierarchy is the NullInjector(), which is the top of the

tree. If you've gone so far up the tree that you are looking for a service in

the NullInjector(), you'll get an error unless you've used @Optional() because

ultimately, everything ends at the NullInjector() and it returns an error or, in the case

of @Optional(), null. For more information on @Optional(), see

the @Optional() section of this guide.

The following diagram represents the relationship between the root ModuleInjector and

its parent injectors as the previous paragraphs describe.

While the name root is a special alias, other ModuleInjector hierarchies don't have

aliases. You have the option to create ModuleInjector hierarchies whenever a

dynamically loaded component is created, such as with the Router, which will create

child ModuleInjector hierarchies.

All requests forward up to the root injector, whether you configured it with

the bootstrapModule() method, or registered all providers with root in their own

services.

@INJECTABLE() VS. @NGMODULE()

If you configure an app-wide provider in the @NgModule() of AppModule, it overrides

one configured for root in the @Injectable() metadata. You can do this to configure a

non-default provider of a service that is shared with multiple applications.

Here is an example of the case where the component router configuration includes a

non-default location strategy by listing its provider in the providers list of

the AppModule.

SRC/APP/APP.MODULE.TS (PROVIDERS)

content_copyproviders: [

 { provide: LocationStrategy, useClass: HashLocationStrategy }

]

ElementInjector

Angular creates ElementInjector hierarchies implicitly for each DOM element.

Providing a service in the @Component() decorator using

its providers or viewProviders property configures an ElementInjector. For example, the

https://angular.io/api/core/Optional
https://angular.io/api/core/Optional
https://angular.io/api/core/Optional
https://angular.io/guide/hierarchical-dependency-injection#optional
https://angular.io/api/core/NgModule
https://angular.io/api/core/Injectable
https://angular.io/guide/router#location-strategy
https://angular.io/api/common/LocationStrategy
https://angular.io/api/common/HashLocationStrategy
https://angular.io/api/core/Component

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

33

following TestComponent configures the ElementInjector by providing the service as

follows:

content_copy@Component({

 …

 providers: [{ provide: ItemService, useValue: { name: 'lamp' } }]

})

export class TestComponent

NOTE:

See the resolution rules section to understand the relationship between

the ModuleInjector tree and the ElementInjector tree.

When you provide services in a component, that service is available by way of

the ElementInjector at that component instance. It may also be visible at child

component/directives based on visibility rules described in the resolution rules section.

When the component instance is destroyed, so is that service instance.

@Directive() and @Component()

A component is a special type of directive, which means that just as @Directive() has

a providers property, @Component() does too. This means that directives as well as

components can configure providers, using the providers property. When you configure

a provider for a component or directive using the providers property, that provider

belongs to the ElementInjector of that component or directive. Components and

directives on the same element share an injector.

Resolution rules

When resolving a token for a component/directive, Angular resolves it in two phases:

1. Against its parents in the ElementInjector hierarchy.

2. Against its parents in the ModuleInjector hierarchy.

When a component declares a dependency, Angular tries to satisfy that dependency

with its own ElementInjector. If the component's injector lacks the provider, it passes

the request up to its parent component's ElementInjector.

https://angular.io/api/core/Component
https://angular.io/guide/hierarchical-dependency-injection#resolution-rules
https://angular.io/guide/hierarchical-dependency-injection#resolution-rules
https://angular.io/api/core/Directive
https://angular.io/api/core/Component
https://angular.io/api/core/Directive
https://angular.io/api/core/Component

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

34

The requests keep forwarding up until Angular finds an injector that can handle the

request or runs out of ancestor ElementInjector hierarchies.

If Angular doesn't find the provider in any ElementInjector hierarchies, it goes back to

the element where the request originated and looks in the ModuleInjector hierarchy. If

Angular still doesn't find the provider, it throws an error.

If you have registered a provider for the same DI token at different levels, the first one

Angular encounters is the one it uses to resolve the dependency. If, for example, a

provider is registered locally in the component that needs a service, Angular doesn't

look for another provider of the same service.

Resolution modifiers

Angular's resolution behavior can be modified

with @Optional(), @Self(), @SkipSelf() and @Host(). Import each of them

from @angular/core and use each in the component class constructor when you inject

your service.

For a working application showcasing the resolution modifiers that this section covers,

see the resolution modifiers example / download example.

Types of modifiers

Resolution modifiers fall into three categories:

 What to do if Angular doesn't find what you're looking for, that is @Optional()

 Where to start looking, that is @SkipSelf()

 Where to stop looking, @Host() and @Self()

By default, Angular always starts at the current Injector and keeps searching all the way

up. Modifiers allow you to change the starting, or self, location and the ending location.

Additionally, you can combine all of the modifiers except @Host() and @Self() and of

course @SkipSelf() and @Self().

@Optional()

@Optional() allows Angular to consider a service you inject to be optional. This way, if

it can't be resolved at runtime, Angular resolves the service as null, rather than throwing

an error. In the following example, the service, OptionalService, isn't provided in the

service, @NgModule(), or component class, so it isn't available anywhere in the app.

https://angular.io/api/core/Optional
https://angular.io/api/core/Self
https://angular.io/api/core/SkipSelf
https://angular.io/api/core/Host
https://angular.io/generated/live-examples/resolution-modifiers/stackblitz.html
https://angular.io/generated/zips/resolution-modifiers/resolution-modifiers.zip
https://angular.io/api/core/Optional
https://angular.io/api/core/SkipSelf
https://angular.io/api/core/Host
https://angular.io/api/core/Self
https://angular.io/api/core/Injector
https://angular.io/api/core/Host
https://angular.io/api/core/Self
https://angular.io/api/core/SkipSelf
https://angular.io/api/core/Self
https://angular.io/api/core/Optional
https://angular.io/api/core/Optional
https://angular.io/api/core/NgModule

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

35

src/app/optional/optional.component.ts

content_copyexport class OptionalComponent {

 constructor(@Optional() public optional?: OptionalService) {}

}

@Self()

Use @Self() so that Angular will only look at the ElementInjector for the current

component or directive.

A good use case for @Self() is to inject a service but only if it is available on the

current host element. To avoid errors in this situation,

combine @Self() with @Optional().

For example, in the following SelfComponent, notice the injected LeafService in the

constructor.

src/app/self-no-data/self-no-data.component.ts

content_copy@Component({

 selector: 'app-self-no-data',

 templateUrl: './self-no-data.component.html',

 styleUrls: ['./self-no-data.component.css']

})

export class SelfNoDataComponent {

 constructor(@Self() @Optional() public leaf?: LeafService) { }

}

In this example, there is a parent provider and injecting the service will return the value,

however, injecting the service with @Self() and @Optional() will

return null because @Self() tells the injector to only search in the current host element.

https://angular.io/api/core/Optional
https://angular.io/api/core/Self
https://angular.io/api/core/Self
https://angular.io/api/core/Self
https://angular.io/api/core/Self
https://angular.io/api/core/Optional
https://angular.io/api/core/Component
https://angular.io/api/core/Self
https://angular.io/api/core/Optional
https://angular.io/api/core/Self
https://angular.io/api/core/Optional
https://angular.io/api/core/Self

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

36

Another example shows the component class with a provider for FlowerService. In this

case, the injector looks no further than the current ElementInjector because it finds

the FlowerService and returns the tulip 🌺.

src/app/self/self.component.ts

content_copy@Component({

 selector: 'app-self',

 templateUrl: './self.component.html',

 styleUrls: ['./self.component.css'],

 providers: [{ provide: FlowerService, useValue: { emoji: '🌺' } }]

})

export class SelfComponent {

 constructor(@Self() public flower: FlowerService) {}

}

@SkipSelf()

@SkipSelf() is the opposite of @Self(). With @SkipSelf(), Angular starts its search for

a service in the parent ElementInjector, rather than in the current one. So if the

parent ElementInjector were using the fern 🌺 value for emoji, but you had maple

leaf 🌺 in the component's providers array, Angular would ignore maple leaf 🌺 and use

fern 🌺.

To see this in code, assume that the following value for emoji is what the parent

component were using, as in this service:

src/app/leaf.service.ts

content_copyexport class LeafService {

 emoji = '🌺';

https://angular.io/api/core/Component
https://angular.io/api/core/Self
https://angular.io/api/core/SkipSelf
https://angular.io/api/core/SkipSelf
https://angular.io/api/core/Self
https://angular.io/api/core/SkipSelf

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

37

}

Imagine that in the child component, you had a different value, maple leaf 🌺 but you

wanted to use the parent's value instead. This is when you'd use @SkipSelf():

src/app/skipself/skipself.component.ts

content_copy@Component({

 selector: 'app-skipself',

 templateUrl: './skipself.component.html',

 styleUrls: ['./skipself.component.css'],

 // Angular would ignore this LeafService instance

 providers: [{ provide: LeafService, useValue: { emoji: '🌺' } }]

})

export class SkipselfComponent {

 // Use @SkipSelf() in the constructor

 constructor(@SkipSelf() public leaf: LeafService) { }

}

In this case, the value you'd get for emoji would be fern 🌺, not maple leaf 🌺.

@SkipSelf() with @Optional()

Use @SkipSelf() with @Optional() to prevent an error if the value is null. In the

following example, the Person service is injected in the constructor. @SkipSelf() tells

Angular to skip the current injector and @Optional() will prevent an error should

the Person service be null.

content_copyclass Person {

 constructor(@Optional() @SkipSelf() parent?: Person) {}

}

https://angular.io/api/core/SkipSelf
https://angular.io/api/core/Component
https://angular.io/api/core/SkipSelf
https://angular.io/api/core/SkipSelf
https://angular.io/api/core/SkipSelf
https://angular.io/api/core/Optional
https://angular.io/api/core/SkipSelf
https://angular.io/api/core/Optional
https://angular.io/api/core/SkipSelf
https://angular.io/api/core/Optional
https://angular.io/api/core/Optional
https://angular.io/api/core/SkipSelf

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

38

@Host()

@Host() lets you designate a component as the last stop in the injector tree when

searching for providers. Even if there is a service instance further up the tree, Angular

won't continue looking. Use @Host() as follows:

src/app/host/host.component.ts

content_copy@Component({

 selector: 'app-host',

 templateUrl: './host.component.html',

 styleUrls: ['./host.component.css'],

 // provide the service

 providers: [{ provide: FlowerService, useValue: { emoji: '🌺' } }]

})

export class HostComponent {

 // use @Host() in the constructor when injecting the service

 constructor(@Host() @Optional() public flower?: FlowerService) { }

}

Since HostComponent has @Host() in its constructor, no matter what the parent

of HostComponent might have as a flower.emoji value, the HostComponent will use

tulip 🌺.

Logical structure of the template

When you provide services in the component class, services are visible within

the ElementInjector tree relative to where and how you provide those services.

Understanding the underlying logical structure of the Angular template will give you a

foundation for configuring services and in turn control their visibility.

https://angular.io/api/core/Host
https://angular.io/api/core/Host
https://angular.io/api/core/Host
https://angular.io/api/core/Component
https://angular.io/api/core/Host
https://angular.io/api/core/Host
https://angular.io/api/core/Optional
https://angular.io/api/core/Host

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

39

Components are used in your templates, as in the following example:

content_copy<app-root>

 <app-child></app-child>

</app-root>

NOTE:

Usually, you declare the components and their templates in separate files. For the

purposes of understanding how the injection system works, it is useful to look at

them from the point of view of a combined logical tree. The

term logical distinguishes it from the render tree, which is your application's DOM

tree. To mark the locations of where the component templates are located, this

guide uses the <#VIEW> pseudo-element, which doesn't actually exist in the render

tree and is present for mental model purposes only.

The following is an example of how the <app-root> and <app-child> view trees are

combined into a single logical tree:

content_copy<app-root>

 <#VIEW>

 <app-child>

 <#VIEW>

 …content goes here…

 </#VIEW>

 </app-child>

 </#VIEW>

</app-root>

Understanding the idea of the <#VIEW> demarcation is especially significant when you

configure services in the component class.

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

40

Providing services in @Component()

How you provide services using a @Component() (or @Directive()) decorator

determines their visibility. The following sections

demonstrate providers and viewProviders along with ways to modify service visibility

with @SkipSelf() and @Host().

A component class can provide services in two ways:

ARRAYS DETAILS

With a providers array content_copy@Component({

 …

 providers: [

 {provide: FlowerService, useValue: {emoji: '🌺'}}

]

})

With

a viewProviders array

content_copy@Component({

 …

 viewProviders: [

 {provide: AnimalService, useValue: {emoji:

'🌺'}}

]

})

To understand how the providers and viewProviders influence service visibility

differently, the following sections build a live example / download example step-by-

step and compare the use of providers and viewProviders in code and a logical tree.

https://angular.io/api/core/Component
https://angular.io/api/core/Component
https://angular.io/api/core/Directive
https://angular.io/api/core/SkipSelf
https://angular.io/api/core/Host
https://angular.io/api/core/Component
https://angular.io/api/core/Component
https://angular.io/generated/live-examples/providers-viewproviders/stackblitz.html
https://angular.io/generated/zips/providers-viewproviders/providers-viewproviders.zip

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

41

NOTE:

In the logical tree, you'll see @Provide, @Inject, and @NgModule, which are not

real HTML attributes but are here to demonstrate what is going on under the hood.

ANGULAR SERVICE

ATTRIBUTE
DETAILS

@Inject(Token)=>Value

Demonstrates that if Token is injected at this

location in the logical tree its value would

be Value.

@Provide(Token=Value)

Demonstrates that there is a declaration

of Token provider with value Value at this location

in the logical tree.

@NgModule(Token) Demonstrates that a fallback NgModule injector

should be used at this location.

Example app structure

The example application has a FlowerService provided in root with an emoji value of

red hibiscus 🌺.

src/app/flower.service.ts

content_copy@Injectable({

 providedIn: 'root'

})

export class FlowerService {

 emoji = '🌺';

}

Consider an application with only an AppComponent and a ChildComponent. The most

basic rendered view would look like nested HTML elements such as the following:

https://angular.io/api/core/Inject
https://angular.io/api/core/NgModule
https://angular.io/api/core/Inject
https://angular.io/api/core/NgModule
https://angular.io/api/core/NgModule
https://angular.io/api/core/Injectable

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

42

content_copy<app-root> <!-- AppComponent selector -->

 <app-child> <!-- ChildComponent selector -->

 </app-child>

</app-root>

However, behind the scenes, Angular uses a logical view representation as follows

when resolving injection requests:

content_copy<app-root> <!-- AppComponent selector -->

 <#VIEW>

 <app-child> <!-- ChildComponent selector -->

 <#VIEW>

 </#VIEW>

 </app-child>

 </#VIEW>

</app-root>

The <#VIEW> here represents an instance of a template. Notice that each component

has its own <#VIEW>.

Knowledge of this structure can inform how you provide and inject your services, and

give you complete control of service visibility.

Now, consider that <app-root> injects the FlowerService:

src/app/app.component.ts

content_copyexport class AppComponent {

 constructor(public flower: FlowerService) {}

}

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

43

Add a binding to the <app-root> template to visualize the result:

src/app/app.component.html

content_copy<p>Emoji from FlowerService: {{flower.emoji}}</p>

The output in the view would be:

Emoji from FlowerService: 🌺

In the logical tree, this would be represented as follows:

content_copy<app-root @NgModule(AppModule)

 @Inject(FlowerService) flower=>"🌺">

 <#VIEW>

 <p>Emoji from FlowerService: {{flower.emoji}} (🌺)</p>

 <app-child>

 <#VIEW>

 </#VIEW>

 </app-child>

 </#VIEW>

</app-root>

When <app-root> requests the FlowerService, it is the injector's job to resolve

the FlowerService token. The resolution of the token happens in two phases:

1. The injector determines the starting location in the logical tree and an ending

location of the search. The injector begins with the starting location and looks for

the token at each level in the logical tree. If the token is found it is returned.

2. If the token is not found, the injector looks for the closest

parent @NgModule() to delegate the request to.

In the example case, the constraints are:

https://angular.io/api/core/NgModule
https://angular.io/api/core/Inject
https://angular.io/api/core/NgModule

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

44

1. Start with <#VIEW> belonging to <app-root> and end with <app-root>.

o Normally the starting point for search is at the point of injection. However,

in this case <app-root> @Components are special in that they also include

their own viewProviders, which is why the search starts

at <#VIEW> belonging to <app-root>. This would not be the case for a

directive matched at the same location.

o The ending location happens to be the same as the component itself,

because it is the topmost component in this application.

2. The AppModule acts as the fallback injector when the injection token can't be

found in the ElementInjector hierarchies.

Using the providers array

Now, in the ChildComponent class, add a provider for FlowerService to demonstrate

more complex resolution rules in the upcoming sections:

src/app/child.component.ts

content_copy@Component({

 selector: 'app-child',

 templateUrl: './child.component.html',

 styleUrls: ['./child.component.css'],

 // use the providers array to provide a service

 providers: [{ provide: FlowerService, useValue: { emoji: '🌺' } }]

})

export class ChildComponent {

 // inject the service

 constructor(public flower: FlowerService) { }

}

https://angular.io/api/core/Component
https://angular.io/api/core/Component

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

45

Now that the FlowerService is provided in the @Component() decorator, when

the <app-child> requests the service, the injector has only to look as far as

the ElementInjector in the <app-child>. It won't have to continue the search any further

through the injector tree.

The next step is to add a binding to the ChildComponent template.

src/app/child.component.html

content_copy<p>Emoji from FlowerService: {{flower.emoji}}</p>

To render the new values, add <app-child> to the bottom of

the AppComponent template so the view also displays the sunflower:

Child Component

Emoji from FlowerService: 🌺

In the logical tree, this is represented as follows:

content_copy<app-root @NgModule(AppModule)

 @Inject(FlowerService) flower=>"🌺">

 <#VIEW>

 <p>Emoji from FlowerService: {{flower.emoji}} (🌺)</p>

 <app-child @Provide(FlowerService="🌺")

 @Inject(FlowerService)=>"🌺"> <!-- search ends here -->

 <#VIEW> <!-- search starts here -->

 <h2>Child Component</h2>

 <p>Emoji from FlowerService: {{flower.emoji}} (🌺)</p>

 </#VIEW>

 </app-child>

https://angular.io/api/core/Component
https://angular.io/api/core/NgModule
https://angular.io/api/core/Inject
https://angular.io/api/core/Inject
https://angular.io/api/core/Component

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

46

 </#VIEW>

</app-root>

When <app-child> requests the FlowerService, the injector begins its search at

the <#VIEW> belonging to <app-child> (<#VIEW> is included because it is injected

from @Component()) and ends with <app-child>. In this case, the FlowerService is

resolved in the providers array with sunflower 🌺 of the <app-child>. The injector

doesn't have to look any further in the injector tree. It stops as soon as it finds

the FlowerService and never sees the red hibiscus 🌺.

Using the viewProviders array

Use the viewProviders array as another way to provide services in

the @Component() decorator. Using viewProviders makes services visible in

the <#VIEW>.

The steps are the same as using the providers array, with the exception of using

the viewProviders array instead.

For step-by-step instructions, continue with this section. If you can set it up on your

own, skip ahead to Modifying service availability.

The example application features a second service, the AnimalService to

demonstrate viewProviders.

First, create an AnimalService with an emoji property of whale 🌺:

src/app/animal.service.ts

content_copyimport { Injectable } from '@angular/core';

@Injectable({

 providedIn: 'root'

})

export class AnimalService {

 emoji = '🌺';

https://angular.io/api/core/Component
https://angular.io/api/core/Component
https://angular.io/guide/hierarchical-dependency-injection#modify-visibility
https://angular.io/api/core/Injectable
https://angular.io/api/core/Injectable

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

47

}

Following the same pattern as with the FlowerService, inject the AnimalService in

the AppComponent class:

src/app/app.component.ts

content_copyexport class AppComponent {

 constructor(public flower: FlowerService, public animal: AnimalService) {}

}

NOTE:

You can leave all the FlowerService related code in place as it will allow a

comparison with the AnimalService.

Add a viewProviders array and inject the AnimalService in the <app-child> class, too,

but give emoji a different value. Here, it has a value of dog 🌺.

src/app/child.component.ts

content_copy@Component({

 selector: 'app-child',

 templateUrl: './child.component.html',

 styleUrls: ['./child.component.css'],

 // provide services

 providers: [{ provide: FlowerService, useValue: { emoji: '🌺' } }],

 viewProviders: [{ provide: AnimalService, useValue: { emoji: '🌺' } }]

})

export class ChildComponent {

 // inject service

https://angular.io/api/core/Component

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

48

 constructor(public flower: FlowerService, public animal: AnimalService) { }

}

Add bindings to the ChildComponent and the AppComponent templates. In

the ChildComponent template, add the following binding:

src/app/child.component.html

content_copy<p>Emoji from AnimalService: {{animal.emoji}}</p>

Additionally, add the same to the AppComponent template:

src/app/app.component.html

content_copy<p>Emoji from AnimalService: {{animal.emoji}}</p>

Now you should see both values in the browser:

AppComponent

Emoji from AnimalService: 🌺

Child Component

Emoji from AnimalService: 🌺

The logic tree for this example of viewProviders is as follows:

content_copy<app-root @NgModule(AppModule)

 @Inject(AnimalService) animal=>"🌺">

 <#VIEW>

 <app-child>

 <#VIEW @Provide(AnimalService="🌺")

 @Inject(AnimalService=>"🌺")>

https://angular.io/api/core/NgModule
https://angular.io/api/core/Inject
https://angular.io/api/core/Inject

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

49

 <!-- ^^using viewProviders means AnimalService is available in <#VIEW>--

>

 <p>Emoji from AnimalService: {{animal.emoji}} (🌺)</p>

 </#VIEW>

 </app-child>

 </#VIEW>

</app-root>

Just as with the FlowerService example, the AnimalService is provided in the <app-

child> @Component() decorator. This means that since the injector first looks in

the ElementInjector of the component, it finds the AnimalService value of dog 🌺. It

doesn't need to continue searching the ElementInjector tree, nor does it need to search

the ModuleInjector.

providers vs. viewProviders

To see the difference between using providers and viewProviders, add another

component to the example and call it InspectorComponent. InspectorComponent will be

a child of the ChildComponent. In inspector.component.ts, inject

the FlowerService and AnimalService in the constructor:

src/app/inspector/inspector.component.ts

content_copyexport class InspectorComponent {

 constructor(public flower: FlowerService, public animal: AnimalService) { }

}

You do not need a providers or viewProviders array. Next,

in inspector.component.html, add the same markup from previous components:

src/app/inspector/inspector.component.html

content_copy<p>Emoji from FlowerService: {{flower.emoji}}</p>

<p>Emoji from AnimalService: {{animal.emoji}}</p>

https://angular.io/api/core/Component

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

50

Remember to add the InspectorComponent to the AppModule declarations array.

src/app/app.module.ts

content_copy@NgModule({

 imports: [BrowserModule, FormsModule],

 declarations: [AppComponent, ChildComponent, InspectorComponent],

 bootstrap: [AppComponent],

 providers: []

})

export class AppModule { }

Next, make sure your child.component.html contains the following:

src/app/child/child.component.html

content_copy<p>Emoji from FlowerService: {{flower.emoji}}</p>

<p>Emoji from AnimalService: {{animal.emoji}}</p>

<div class="container">

 <h3>Content projection</h3>

 <ng-content></ng-content>

</div>

<h3>Inside the view</h3>

<app-inspector></app-inspector>

https://angular.io/api/core/NgModule
https://angular.io/api/platform-browser/BrowserModule
https://angular.io/api/forms/FormsModule

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

51

The first two lines, with the bindings, are there from previous steps. The new parts

are <ng-content> and <app-inspector>. <ng-content> allows you to project content,

and <app-inspector> inside the ChildComponent template makes

the InspectorComponent a child component of ChildComponent.

Next, add the following to app.component.html to take advantage of content projection.

src/app/app.component.html

content_copy<app-child><app-inspector></app-inspector></app-child>

The browser now renders the following, omitting the previous examples for brevity:

//…Omitting previous examples. The following applies to this section.

Content projection: this is coming from content. Doesn't get to see

puppy because the puppy is declared inside the view only.

Emoji from FlowerService: 🌺

Emoji from AnimalService: 🌺

Emoji from FlowerService: 🌺

Emoji from AnimalService: 🌺

These four bindings demonstrate the difference between providers and viewProviders.

Since the dog 🌺 is declared inside the <#VIEW>, it isn't visible to the projected

content. Instead, the projected content sees the whale 🌺.

The next section though, where InspectorComponent is a child component

of ChildComponent, InspectorComponent is inside the <#VIEW>, so when it asks for

the AnimalService, it sees the dog 🌺.

The AnimalService in the logical tree would look like this:

https://angular.io/api/core/ng-content
https://angular.io/api/core/ng-content

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

52

content_copy<app-root @NgModule(AppModule)

 @Inject(AnimalService) animal=>"🌺">

 <#VIEW>

 <app-child>

 <#VIEW @Provide(AnimalService="🌺")

 @Inject(AnimalService=>"🌺")>

 <!-- ^^using viewProviders means AnimalService is available in <#VIEW>-

->

 <p>Emoji from AnimalService: {{animal.emoji}} (🌺)</p>

 <div class="container">

 <h3>Content projection</h3>

 <app-inspector @Inject(AnimalService) animal=>"🌺">

 <p>Emoji from AnimalService: {{animal.emoji}} (🌺)</p>

 </app-inspector>

 </div>

 <app-inspector>

 <#VIEW @Inject(AnimalService) animal=>"🌺">

 <p>Emoji from AnimalService: {{animal.emoji}} (🌺)</p>

 </#VIEW>

 </app-inspector>

https://angular.io/api/core/NgModule
https://angular.io/api/core/Inject
https://angular.io/api/core/Inject
https://angular.io/api/core/Inject
https://angular.io/api/core/Inject

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

53

 </#VIEW>

 </app-child>

 </#VIEW>

</app-root>

The projected content of <app-inspector> sees the whale 🌺, not the dog 🌺, because the

dog 🌺 is inside the <app-child> <#VIEW>. The <app-inspector> can only see the

dog 🌺 if it is also within the <#VIEW>.

Modifying service visibility

This section describes how to limit the scope of the beginning and

ending ElementInjector using the visibility decorators @Host(), @Self(),

and @SkipSelf().

Visibility of provided tokens

Visibility decorators influence where the search for the injection token begins and ends

in the logic tree. To do this, place visibility decorators at the point of injection, that is,

the constructor(), rather than at a point of declaration.

To alter where the injector starts looking for FlowerService, add @SkipSelf() to

the <app-child> @Inject declaration for the FlowerService. This declaration is in

the <app-child> constructor as shown in child.component.ts:

content_copyconstructor(@SkipSelf() public flower : FlowerService) { }

With @SkipSelf(), the <app-child> injector doesn't look to itself for the FlowerService.

Instead, the injector starts looking for the FlowerService at the ElementInjector or

the <app-root>, where it finds nothing. Then, it goes back to the <app-

child> ModuleInjector and finds the red hibiscus 🌺 value, which is available because

the <app-child> ModuleInjector and the <app-root> ModuleInjector are flattened into

one ModuleInjector. Thus, the UI renders the following:

Emoji from FlowerService: 🌺

In a logical tree, this same idea might look like this:

https://angular.io/api/core/Host
https://angular.io/api/core/Self
https://angular.io/api/core/SkipSelf
https://angular.io/api/core/SkipSelf
https://angular.io/api/core/Inject
https://angular.io/api/core/SkipSelf
https://angular.io/api/core/SkipSelf

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

54

content_copy<app-root @NgModule(AppModule)

 @Inject(FlowerService) flower=>"🌺">

 <#VIEW>

 <app-child @Provide(FlowerService="🌺")>

 <#VIEW @Inject(FlowerService, SkipSelf)=>"🌺">

 <!-- With SkipSelf, the injector looks to the next injector up the tree -->

 </#VIEW>

 </app-child>

 </#VIEW>

</app-root>

Though <app-child> provides the sunflower 🌺, the application renders the red

hibiscus 🌺 because @SkipSelf() causes the current injector to skip itself and look to its

parent.

If you now add @Host() (in addition to the @SkipSelf()) to the @Inject of

the FlowerService, the result will be null. This is because @Host() limits the upper

bound of the search to the <#VIEW>. Here's the idea in the logical tree:

content_copy<app-root @NgModule(AppModule)

 @Inject(FlowerService) flower=>"🌺">

 <#VIEW> <!-- end search here with null-->

 <app-child @Provide(FlowerService="🌺")> <!-- start search here -->

 <#VIEW @Inject(FlowerService, @SkipSelf, @Host, @Optional)=>null>

 </#VIEW>

 </app-parent>

https://angular.io/api/core/NgModule
https://angular.io/api/core/Inject
https://angular.io/api/core/Inject
https://angular.io/api/core/SkipSelf
https://angular.io/api/core/SkipSelf
https://angular.io/api/core/SkipSelf
https://angular.io/api/core/Host
https://angular.io/api/core/SkipSelf
https://angular.io/api/core/Inject
https://angular.io/api/core/Host
https://angular.io/api/core/NgModule
https://angular.io/api/core/Inject
https://angular.io/api/core/Inject
https://angular.io/api/core/SkipSelf
https://angular.io/api/core/Host
https://angular.io/api/core/Optional

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

55

 </#VIEW>

</app-root>

Here, the services and their values are the same, but @Host() stops the injector from

looking any further than the <#VIEW> for FlowerService, so it doesn't find it and

returns null.

NOTE:

The example application uses @Optional() so the application does not throw an

error, but the principles are the same.

@SkipSelf() and viewProviders

The <app-child> currently provides the AnimalService in the viewProviders array with

the value of dog 🌺. Because the injector has only to look at the ElementInjector of

the <app-child> for the AnimalService, it never sees the whale 🌺.

As in the FlowerService example, if you add @SkipSelf() to the constructor for

the AnimalService, the injector won't look in the ElementInjector of the current <app-

child> for the AnimalService.

content_copyexport class ChildComponent {

 // add @SkipSelf()

 constructor(@SkipSelf() public animal : AnimalService) { }

}

Instead, the injector will begin at the <app-root> ElementInjector. Remember that

the <app-child> class provides the AnimalService in the viewProviders array with a

value of dog 🌺:

content_copy@Component({

 selector: 'app-child',

https://angular.io/api/core/Host
https://angular.io/api/core/Optional
https://angular.io/api/core/SkipSelf
https://angular.io/api/core/SkipSelf
https://angular.io/api/core/SkipSelf
https://angular.io/api/core/SkipSelf
https://angular.io/api/core/Component

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

56

 …

 viewProviders:

 [{ provide: AnimalService, useValue: { emoji: '🌺' } }]

})

The logical tree looks like this with @SkipSelf() in <app-child>:

content_copy<app-root @NgModule(AppModule)

 @Inject(AnimalService=>"🌺")>

 <#VIEW><!-- search begins here -->

 <app-child>

 <#VIEW @Provide(AnimalService="🌺")

 @Inject(AnimalService, SkipSelf=>"🌺")>

 <!--Add @SkipSelf -->

 </#VIEW>

 </app-child>

 </#VIEW>

</app-root>

With @SkipSelf() in the <app-child>, the injector begins its search for

the AnimalService in the <app-root> ElementInjector and finds whale 🌺.

@Host() and viewProviders

If you add @Host() to the constructor for AnimalService, the result is dog 🌺 because

the injector finds the AnimalService in the <app-child> <#VIEW>. Here is

the viewProviders array in the <app-child> class and @Host() in the constructor:

content_copy@Component({

https://angular.io/api/core/SkipSelf
https://angular.io/api/core/NgModule
https://angular.io/api/core/Inject
https://angular.io/api/core/Inject
https://angular.io/api/core/SkipSelf
https://angular.io/api/core/SkipSelf
https://angular.io/api/core/SkipSelf
https://angular.io/api/core/Host
https://angular.io/api/core/Host
https://angular.io/api/core/Host
https://angular.io/api/core/Component

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

57

 selector: 'app-child',

 …

 viewProviders:

 [{ provide: AnimalService, useValue: { emoji: '🌺' } }]

})

export class ChildComponent {

 constructor(@Host() public animal : AnimalService) { }

}

@Host() causes the injector to look until it encounters the edge of the <#VIEW>.

content_copy<app-root @NgModule(AppModule)

 @Inject(AnimalService=>"🌺")>

 <#VIEW>

 <app-child>

 <#VIEW @Provide(AnimalService="🌺")

 @Inject(AnimalService, @Host=>"🌺")> <!-- @Host stops search here --

>

 </#VIEW>

 </app-child>

 </#VIEW>

</app-root>

https://angular.io/api/core/Host
https://angular.io/api/core/Host
https://angular.io/api/core/NgModule
https://angular.io/api/core/Inject
https://angular.io/api/core/Inject
https://angular.io/api/core/Host
https://angular.io/api/core/Host

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

58

Add a viewProviders array with a third animal, hedgehog 🌺, to

the app.component.ts @Component() metadata:

content_copy@Component({

 selector: 'app-root',

 templateUrl: './app.component.html',

 styleUrls: ['./app.component.css'],

 viewProviders: [{ provide: AnimalService, useValue: { emoji: '🌺' } }]

})

Next, add @SkipSelf() along with @Host() to the constructor for the Animal

Service in child.component.ts. Here are @Host() and @SkipSelf() in the <app-

child> constructor:

content_copyexport class ChildComponent {

 constructor(

 @Host() @SkipSelf() public animal : AnimalService) { }

}

When @Host() and @SkipSelf() were applied to the FlowerService, which is in

the providers array, the result was null because @SkipSelf() starts its search in

the <app-child> injector, but @Host() stops searching at <#VIEW> —where there is

no FlowerService In the logical tree, you can see that the FlowerService is visible

in <app-child>, not its <#VIEW>.

However, the AnimalService, which is provided in

the AppComponent viewProviders array, is visible.

The logical tree representation shows why this is:

https://angular.io/api/core/Component
https://angular.io/api/core/Component
https://angular.io/api/core/SkipSelf
https://angular.io/api/core/Host
https://angular.io/api/core/Host
https://angular.io/api/core/SkipSelf
https://angular.io/api/core/Host
https://angular.io/api/core/SkipSelf
https://angular.io/api/core/Host
https://angular.io/api/core/SkipSelf
https://angular.io/api/core/SkipSelf
https://angular.io/api/core/Host

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

59

content_copy<app-root @NgModule(AppModule)

 @Inject(AnimalService=>"🌺")>

 <#VIEW @Provide(AnimalService="🌺")

 @Inject(AnimalService, @Optional)=>"🌺">

 <!-- ^^@SkipSelf() starts here, @Host() stops here^^ -->

 <app-child>

 <#VIEW @Provide(AnimalService="🌺")

 @Inject(AnimalService, @SkipSelf, @Host, @Optional)=>"🌺">

 <!-- Add @SkipSelf ^^-->

 </#VIEW>

 </app-child>

 </#VIEW>

</app-root>

@SkipSelf(), causes the injector to start its search for the AnimalService at the <app-

root>, not the <app-child>, where the request originates, and @Host() stops the search

at the <app-root> <#VIEW>. Since AnimalService is provided by way of

the viewProviders array, the injector finds hedgehog 🌺 in the <#VIEW>.

ElementInjector use case examples

The ability to configure one or more providers at different levels opens up useful

possibilities. For a look at the following scenarios in a working app, see the heroes use

case examples / download example.

Scenario: service isolation

Architectural reasons may lead you to restrict access to a service to the application

domain where it belongs. For example, the guide sample includes

https://angular.io/api/core/NgModule
https://angular.io/api/core/Inject
https://angular.io/api/core/Inject
https://angular.io/api/core/Optional
https://angular.io/api/core/SkipSelf
https://angular.io/api/core/Host
https://angular.io/api/core/Inject
https://angular.io/api/core/SkipSelf
https://angular.io/api/core/Host
https://angular.io/api/core/Optional
https://angular.io/api/core/SkipSelf
https://angular.io/api/core/SkipSelf
https://angular.io/api/core/Host
https://angular.io/generated/live-examples/hierarchical-dependency-injection/stackblitz.html
https://angular.io/generated/live-examples/hierarchical-dependency-injection/stackblitz.html
https://angular.io/generated/zips/hierarchical-dependency-injection/hierarchical-dependency-injection.zip

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

60

a VillainsListComponent that displays a list of villains. It gets those villains from

a VillainsService.

If you provided VillainsService in the root AppModule (where you registered

the HeroesService), that would make the VillainsService visible everywhere in the

application, including the Hero workflows. If you later modified the VillainsService,

you could break something in a hero component somewhere.

Instead, you can provide the VillainsService in the providers metadata of

the VillainsListComponent like this:

src/app/villains-list.component.ts (metadata)

content_copy@Component({

 selector: 'app-villains-list',

 templateUrl: './villains-list.component.html',

 providers: [VillainsService]

})

By providing VillainsService in the VillainsListComponent metadata and nowhere else,

the service becomes available only in the VillainsListComponent and its subcomponent

tree.

VillainService is a singleton with respect to VillainsListComponent because that is

where it is declared. As long as VillainsListComponent does not get destroyed it will be

the same instance of VillainService but if there are multiple instances

of VillainsListComponent, then each instance of VillainsListComponent will have its

own instance of VillainService.

Scenario: multiple edit sessions

Many applications allow users to work on several open tasks at the same time. For

example, in a tax preparation application, the preparer could be working on several tax

returns, switching from one to the other throughout the day.

To demonstrate that scenario, imagine an outer HeroListComponent that displays a list

of super heroes.

https://angular.io/api/core/Component

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

61

To open a hero's tax return, the preparer clicks on a hero name, which opens a

component for editing that return. Each selected hero tax return opens in its own

component and multiple returns can be open at the same time.

Each tax return component has the following characteristics:

 Is its own tax return editing session

 Can change a tax return without affecting a return in another component

 Has the ability to save the changes to its tax return or cancel them

Suppose that the HeroTaxReturnComponent had logic to manage and restore changes.

That would be a straightforward task for a hero tax return. In the real world, with a rich

tax return data model, the change management would be tricky. You could delegate that

management to a helper service, as this example does.

The HeroTaxReturnService caches a single HeroTaxReturn, tracks changes to that

return, and can save or restore it. It also delegates to the application-wide

singleton HeroService, which it gets by injection.

src/app/hero-tax-return.service.ts

content_copyimport { Injectable } from '@angular/core';

import { HeroTaxReturn } from './hero';

import { HeroesService } from './heroes.service';

@Injectable()

export class HeroTaxReturnService {

 private currentTaxReturn!: HeroTaxReturn;

 private originalTaxReturn!: HeroTaxReturn;

 constructor(private heroService: HeroesService) { }

https://angular.io/api/core/Injectable
https://angular.io/api/core/Injectable

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

62

 set taxReturn(htr: HeroTaxReturn) {

 this.originalTaxReturn = htr;

 this.currentTaxReturn = htr.clone();

 }

 get taxReturn(): HeroTaxReturn {

 return this.currentTaxReturn;

 }

 restoreTaxReturn() {

 this.taxReturn = this.originalTaxReturn;

 }

 saveTaxReturn() {

 this.taxReturn = this.currentTaxReturn;

 this.heroService.saveTaxReturn(this.currentTaxReturn).subscribe();

 }

}

Here is the HeroTaxReturnComponent that makes use of HeroTaxReturnService.

src/app/hero-tax-return.component.ts

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

63

content_copyimport { Component, EventEmitter, Input, Output } from

'@angular/core';

import { HeroTaxReturn } from './hero';

import { HeroTaxReturnService } from './hero-tax-return.service';

@Component({

 selector: 'app-hero-tax-return',

 templateUrl: './hero-tax-return.component.html',

 styleUrls: ['./hero-tax-return.component.css'],

 providers: [HeroTaxReturnService]

})

export class HeroTaxReturnComponent {

 message = '';

 @Output() close = new EventEmitter<void>();

 get taxReturn(): HeroTaxReturn {

 return this.heroTaxReturnService.taxReturn;

 }

 @Input()

 set taxReturn(htr: HeroTaxReturn) {

https://angular.io/api/core/Component
https://angular.io/api/core/EventEmitter
https://angular.io/api/core/Input
https://angular.io/api/core/Output
https://angular.io/api/core/Component
https://angular.io/api/core/Output
https://angular.io/api/core/EventEmitter
https://angular.io/api/core/Input

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

64

 this.heroTaxReturnService.taxReturn = htr;

 }

 constructor(private heroTaxReturnService: HeroTaxReturnService) { }

 onCanceled() {

 this.flashMessage('Canceled');

 this.heroTaxReturnService.restoreTaxReturn();

 }

 onClose() { this.close.emit(); }

 onSaved() {

 this.flashMessage('Saved');

 this.heroTaxReturnService.saveTaxReturn();

 }

 flashMessage(msg: string) {

 this.message = msg;

 setTimeout(() => this.message = '', 500);

 }

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

65

}

The tax-return-to-edit arrives by way of the @Input() property, which is implemented

with getters and setters. The setter initializes the component's own instance of

the HeroTaxReturnService with the incoming return. The getter always returns what

that service says is the current state of the hero. The component also asks the service to

save and restore this tax return.

This won't work if the service is an application-wide singleton. Every component would

share the same service instance, and each component would overwrite the tax return

that belonged to another hero.

To prevent this, configure the component-level injector

of HeroTaxReturnComponent to provide the service, using the providers property in the

component metadata.

src/app/hero-tax-return.component.ts (providers)

content_copyproviders: [HeroTaxReturnService]

The HeroTaxReturnComponent has its own provider of the HeroTaxReturnService.

Recall that every component instance has its own injector. Providing the service at the

component level ensures that every instance of the component gets a private instance of

the service. This makes sure that no tax return gets overwritten.

The rest of the scenario code relies on other Angular features and techniques that

you can learn about elsewhere in the documentation. You can review it and

download it from the live example / download example.

Scenario: specialized providers

Another reason to provide a service again at another level is to substitute a more

specialized implementation of that service, deeper in the component tree.

For example, consider a Car component that includes tire service information and

depends on other services to provide more details about the car.

The root injector, marked as (A), uses generic providers for details

about CarService and EngineService.

https://angular.io/api/core/Input
https://angular.io/generated/live-examples/hierarchical-dependency-injection/stackblitz.html
https://angular.io/generated/zips/hierarchical-dependency-injection/hierarchical-dependency-injection.zip

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

66

1. Car component (A). Component (A) displays tire service data about a car and

specifies generic services to provide more information about the car.

2. Child component (B). Component (B) defines its own, specialized providers

for CarService and EngineService that have special capabilities suitable for

what's going on in component (B).

3. Child component (C) as a child of Component (B). Component (C) defines its

own, even more specialized provider for CarService.

\

Behind the scenes, each component sets up its own injector with zero, one, or more

providers defined for that component itself.

When you resolve an instance of Car at the deepest component (C), its injector

produces:

 An instance of Car resolved by injector (C)

 An Engine resolved by injector (B)

 Its Tires resolved by the root injector (A).

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

67

 (6)Injecting a service into another service in Angular

 say that you have a Service1 and Service2 in an regular Angular application — nothing

fancy at all. Let’s say now that this Service2 depends on Service1 and right way you

would write something like:

And in Service2:

So far, you won't see any errors in your browser’s console. But at the time that you inject

Service2 into a component,

you'll see something like this:

No provider for Service1

So, whats happening here?

1 — Angular is instantiating Service2 because we injected it into AppComponent and

declared it as a provider.

2 — To complete this task, Angular will check the dependencies of Service2 and, in this

case, it is Service1. But, how Angular would know that Service1 is a provider to

Service2? There is no providers field in @Injectable and instantiate Service1 manually it

is strongly not recommended.

So what we do?

We must tell Angular to instantiate Service1 to be available (instatiated) before Service2.

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

68

Hence, we declare it as a provider into our module. In this small example application,

we have only one module, the app.module.ts.

Now, Service1 is a singleton provider to the entire application and it is already

instantiated. After that, Angular won't complain anymore about Service1. :)

See ya.

 (7) Injection context:-

The dependency injection (DI) system relies internally on a runtime context where the

current injector is available. This means that injectors can only work when code is

executed in this context.

The injection context is available in these situations:

 Construction (via the constructor) of a class being instantiated by the DI system,

such as an @Injectable or @Component.

 In the initializer for fields of such classes.

 In the factory function specified for useFactory of a Provider or an @Injectable.

 In the factory function specified for an InjectionToken.

 Within a stack frame that is run in an injection context.

Knowing when your are in an injection context, will allow you to use the inject function

to inject instances.

Class constructors

Everytime the DI system instantiates a class, this is done in an injection context. This is

being handled by the framework itself. The constructor of the class is executed in that

runtime context thus allowing to inject a token using the inject function.

content_copyclass MyComponent {

 private service1: Service1;

 private service2: Service2 = inject(Service2); // In context

 constructor() {

https://angular.io/api/core/Injectable
https://angular.io/api/core/Component
https://angular.io/api/core/Provider
https://angular.io/api/core/Injectable
https://angular.io/api/core/InjectionToken
https://angular.io/api/core/inject
https://angular.io/api/core/inject

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

69

 this.service1 = inject(HeroService) // In context

 }

}

Stack frame in context

Some APIs are designed to be run in an injection context. This is the case, for example,

of the router guards. It allows the use of inject to access a service within the guard

function.

Here is an example for CanActivateFn

content_copyconst canActivateTeam: CanActivateFn =

(route: ActivatedRouteSnapshot, state: RouterStateSnapshot) => {

return inject(PermissionsService).canActivate(inject(UserToken),

route.params.id);

};

Run within an injection context

When you want to run a given function in an injection context without being in one, you

can do it with runInInjectionContext. This requires to have access to a given injector

like the EnvironmentInjector for example.

src/app/heroes/hero.service.ts

content_copy@Injectable({

 providedIn: 'root',

})

export class HeroService {

 private environmentInjector = inject(EnvironmentInjector);

https://angular.io/api/core/inject
https://angular.io/api/router/CanActivateFn
https://angular.io/api/router/CanActivateFn
https://angular.io/api/router/ActivatedRouteSnapshot
https://angular.io/api/router/RouterStateSnapshot
https://angular.io/api/core/runInInjectionContext
https://angular.io/api/core/EnvironmentInjector
https://angular.io/api/core/Injectable
https://angular.io/api/core/EnvironmentInjector

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

70

 someMethod() {

 runInInjectionContext(this.environmentInjector, () => {

 inject(SomeService); // Do what you need with the injected service

 });

 }

}

Note that inject will return an instance only if the injector can resolve the required

token.

Asserts the context

Angular provides assertInInjectionContext helper function to assert that the current

context is an injection context.

Using DI outside of a context

Calling inject or calling assertInInjectionContext outside of an injection context will

throw error NG0203.

 (8)Angular 5: Making API calls with the

HttpClient service
Angular 4.3 introduced a new HttpClient service, which is a replacement for the Http

service from Angular 2. It works mostly the same as the old service, handling both

single and concurrent data loading with RxJs Observables, and writing data to an API.

 AngularJS

 Node.js

https://angular.io/api/core/runInInjectionContext
https://angular.io/api/core/assertInInjectionContext
https://angular.io/api/core/inject
https://angular.io/api/core/assertInInjectionContext
https://angular.io/errors/NG0203
https://www.metaltoad.com/help/angularjs
https://www.metaltoad.com/help/nodejs

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

71

Metal Toad is an AWS Managed Services provider. In addition to Angular+Django

work we recommend checking out our article on how to host a website on AWS in 5

minutes.

Note to readers, May 18, 2018: the code in this post is built for Angular 5.x. The

same techniques will work with Angular 6 as long as you use the rxjs-compat Node

package. To see how to upgrade this code for full, native RxJS compatibility,

see this post.

Angular 4.3 introduced a new HttpClient service, which is a replacement for the Http

service from Angular 2. It works mostly the same as the old service, handling both

single and concurrent data loading with RxJs Observables, and writing data to an API.

As of Angular 5.0, the older Http service still works, but it's deprecated and has been

removed in Angular 6.0. The code samples in this post are compatible with Angular 4.3

and 5.x (and 6.x with rxjs-compat). If your project is still using Angular 4.2 or lower,

including Angular 2, see my previous posts on making API calls with the Http service.

About Observables and the Http service

Many JavaScript developers should be familiar with using Promises to load data

asynchronously. Observables are a more feature-rich system, which emit data in

packets. A single Observable object can emit a single packet of data, or can emit a

stream containing multiple discrete packets. Other objects can subscribe to these

Observables and run a callback each time data is emitted. (In this example using the

HttpClient service, each Observable will only emit data once, but a different type of

Observable could emit data more than once.)

The Observable classes in Angular are provided by the ReactiveX library.

The HttpClient service in Angular 4.3+ is the successor to Angular 2's Http service and

the $http service from AngularJS 1.x. Instead of returning a Promise, its http.get()

method returns an Observable object.

Try this at home!

The source code for this demo application is available on GitHub. That repository

contains a simple API written in Express and a single-page Angular application which

calls the API to read and write data.

https://www.metaltoad.com/services/aws-managed-services
https://www.metaltoad.com/blog/how-host-website-aws-5-minutes
https://www.metaltoad.com/blog/angular-6-upgrading-api-calls-rxjs-6
https://www.metaltoad.com/blog/angular-2-http-observables-and-concurrent-data-loading
http://reactivex.io/
https://github.com/kdechant/angular5-httpclient-demo

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

72

This tutorial uses Webpack to manage assets. Angular 5 still supports SystemJS and

you can use that instead if you prefer. For an example of how to configure SystemJS to

work with HttpClient, see what it would look like if we upgraded my old Angular 2/4

demo app to Angular 5.

It's recommended that you try the Angular Tutorial first, for a basic overview of

Angular architecture and Typescript.

The Back-End API

The back-end for this app is a simple Express-based API that exposes the following

endpoints:

GET /api/food

Returns an array of all existing Food objects in JSON format.

GET /api/books

Returns an array of all existing Book objects in JSON format.

GET /api/movies

Returns an array of all existing Movie objects in JSON format.

POST /api/food

Creates a new Food object in the back-end data store. Accepts a JSON object in the

request body.

If successful, returns a 200 OK response, containing a JSON object representing the

data as saved on the server, including the auto-numbered ID

PUT /api/food/{food_id}

Updates an existing Food object. Accepts a JSON object in the request body.

If successful, returns a 200 OK response, containing a JSON object representing the

data as saved on the server.

DELETE /api/food/{food_id}

Deletes an existing Food object. Does not require a response body.

If successful, returns a 200 OK response, containing a JSON object representing the

Food object as it existed before it was deleted.

https://github.com/kdechant/angular2-http-demo/tree/angular5
https://github.com/kdechant/angular2-http-demo/tree/angular5
https://angular.io/tutorial

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

73

The entire Express API code is as follows. (Portions omitted for brevity. See the sample

app for the full code.)

const express = require('express');

const bodyParser = require('body-parser');

const path = require('path');

const app = express();

app.use(express.static(__dirname));

app.use(bodyParser.json()); // support json encoded bodies

// some data for the API

var foods = [

 { "id": 1, "name": "Donuts" },

 { "id": 2, "name": "Pizza" },

 { "id": 3, "name": "Tacos" }

];

var books = [

 { "title": "Hitchhiker's Guide to the Galaxy" },

 { "title": "The Fellowship of the Ring" },

 { "title": "Moby Dick" }

];

var movies = [

 { "title": "Ghostbusters" },

 { "title": "Star Wars" },

 { "title": "Batman Begins" }

];

// the "index" route, which serves the Angular app

app.get('/', function (req, res) {

 res.sendFile(path.join(__dirname,'/dist/index.html'))

});

// the GET "books" API endpoint

https://github.com/kdechant/angular5-httpclient-demo/blob/master/app.js
https://github.com/kdechant/angular5-httpclient-demo/blob/master/app.js

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

74

app.get('/api/books', function (req, res) {

 res.send(books);

});

// the GET "movies" API endpoint

app.get('/api/movies', function (req, res) {

 res.send(movies);

});

// the GET "foods" API endpoint

app.get('/api/food', function (req, res) {

 res.send(foods);

});

// POST endpoint for creating a new food

app.post('/api/food', function (req, res) {

 // calculate the next ID

 let id = 1;

 if (foods.length > 0) {

 let maximum = Math.max.apply(Math, foods.map(function (f) { return f.id; }));

 id = maximum + 1;

 }

 let new_food = {"id": id, "name": req.body.name};

 foods.push(new_food);

 res.send(new_food);

});

// PUT endpoint for editing food

app.put('/api/food/:id', function (req, res) {

 let id = req.params.id;

 let f = foods.find(x => x.id == id);

 f.name = req.body.name;

 res.send(f);

});

// DELETE endpoint for deleting food

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

75

app.delete('/api/food/:id', function (req, res) {

 let id = req.params.id;

 let f = foods.find(x => x.id == id);

 foods = foods.filter(x => x.id != id);

 res.send(f);

});

// HTTP listener

app.listen(3000, function () {

 console.log('Example listening on port 3000!');

});

module.exports = app;

Getting Started with HttpClient

To use the Angular HttpClient, we need to inject it into our app's dependencies:

import { NgModule, CUSTOM_ELEMENTS_SCHEMA } from '@angular/core';

import { BrowserModule } from '@angular/platform-browser';

import { HttpClientModule } from '@angular/common/http'; // replaces previous Http

service

import { FormsModule } from '@angular/forms';

import { DemoService } from './demo.service'; // our custom service, see below

import { AppComponent } from './app.component';

@NgModule({

 imports: [BrowserModule, FormsModule, HttpClientModule],

 declarations: [AppComponent],

 providers: [DemoService],

 schemas: [CUSTOM_ELEMENTS_SCHEMA],

 bootstrap: [AppComponent]

})

export class AppModule { }

Building the Angular Component

Our demo app contains only one simple component, which contains a few elements to

display some simple data. We will be loading data from a few JSON files, to simulate

an API call.

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

76

src/app/app.component.ts:

import {Component} from '@angular/core';

import {DemoService} from './demo.service';

import {Observable} from 'rxjs/Rx';

@Component({

 selector: 'demo-app',

 template:`

 <h1>Angular 5 HttpClient Demo App</h1>

 <h2>Foods</h2>

 <li *ngFor="let food of foods">{{food.name}}

 `

})

export class AppComponent {

 public foods;

 constructor(private _demoService: DemoService) { }

}

Executing a Single HTTP Request

We can use HttpClient to request a single resource, by using http.get. This is very

similar to the Angular 2 Http service. Notice that we no longer have to

`.map((res:Response) => res.json()` because HttpClient handles this for us:

src/app/demo.service.ts:

import {Injectable} from '@angular/core';

import { HttpClient, HttpHeaders } from '@angular/common/http';

import {Observable} from 'rxjs/Observable';

const httpOptions = {

 headers: new HttpHeaders({ 'Content-Type': 'application/json' })

};

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

77

@Injectable()

export class DemoService {

 constructor(private http:HttpClient) {}

 // Uses http.get() to load data from a single API endpoint

 getFoods() {

 return this.http.get('/api/food');

 }

}

Our Demo service makes the HTTP request and returns the Observable object. To

actually get the data from the service, we need to update our component to subscribe to

the Observable:

src/app/app.component.ts:

...

 ngOnInit() {

 this.getFoods();

 }

+ getFoods() {

+ this._demoService.getFoods().subscribe(

+ data => { this.foods = data},

+ err => console.error(err),

+ () => console.log('done loading foods')

+);

+ }

}

The subscribe() method takes three arguments which are event handlers. They are called

onNext, onError, and onCompleted. The onNext method will receive the HTTP

response data. Observables support streams of data and can call this event handler

multiple times. In the case of the HTTP request, however, the Observable will usually

emit the whole data set in one call. The onError event handler is called if the HTTP

request returns an error code such as a 404. The onCompleted event handler executes

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

78

after the Observable has finished returning all its data. This is less useful in the case of

the Http.get() call, because all the data we need is passed into the onNext handler.

For more information about the Observable object, see the ReactiveX documentation.

In our example here, we use the onNext handler to populate the component's 'foods'

variable.

The error handler just logs the error to the console. The completion callback runs after

the success callback is finished.

The handler functions are optional. If you don't need the error or completion handler,

you may omit them. If you don't provide an error handler, however, you may end up

with an uncaught Error object which will stop execution of your application.

Executing multiple concurrent HTTP requests

Many times, we need to load data from more than one source, and we need to delay the

post-loading logic until all the data has loaded. ReactiveX Observables provide a

method called forkJoin() to wrap multiple Observables. Its subscribe() method sets the

handlers on the entire set of Observables.

To run the concurrent HTTP requests, let's add the following code to our service:

src/app/demo.service.ts:

...

@Injectable()

export class DemoService {

 constructor(private http:HttpClient) {}

 // Uses http.get() to load data from a single API endpoint

 getFoods() {

 return this.http.get('/api/food');

 }

+ // Uses Observable.forkJoin() to run multiple concurrent http.get() requests.

http://reactivex.io/documentation/observable.html

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

79

+ // The entire operation will result in an error state if any single request fails.

+ getBooksAndMovies() {

+ return Observable.forkJoin(

+ this.http.get('/api/books'),

+ this.http.get('/api/movies')

+);

+ }

}

Notice that forkJoin() takes multiple arguments of type Observable. These can be

Http.get() calls or any other asynchronous operation which implements the Observable

pattern. We don't subscribe to each of these Observables individually. Instead, we

subscribe to the "container" Observable object created by forkJoin().

When using Http.get() and Observable.forkJoin() together, the onNext handler will

execute only once, and only after all HTTP requests complete successfully. It will

receive an array containing the combined response data from all requests. In this case,

our books data will be stored in data[0] and our movies data will be stored in data[1].

The onError handler here will run if either of the HTTP requests returns an error code.

Next, we subscribe to the new method in our component:

src/app/app.component.ts:

import {Component} from '@angular/core';

import {DemoService} from './demo.service';

import {Observable} from 'rxjs/Rx';

@Component({

 selector: 'demo-app',

 template:`

 <h1>Angular 5 HttpClient Demo App</h1>

 <p>This is a complete mini-CRUD application using an Express back-end. See

src/app/demo.service.ts for the API call code.</p>

 <h2>Foods</h2>

 <li *ngFor="let food of foods">{{food.name}}

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

80

 <h2>Books and Movies</h2>

+ <p>This is an example of loading data from multiple endpoints using

Observable.forkJoin(). The API calls here are read-only.</p>

+ <h3>Books</h3>

+

+ <li *ngFor="let book of books">{{book.title}}

+

+ <h3>Movies</h3>

+

+ <li *ngFor="let movie of movies">{{movie.title}}

+

 `

})

export class AppComponent {

 public foods;

+ public books;

+ public movies;

 ...

 getFoods() {

 ...

 }

+ getBooksAndMovies() {

+ this._demoService.getBooksAndMovies().subscribe(

+ data => {

+ this.books = data[0]

+ this.movies = data[1]

+ }

+ // No error or completion callbacks here. They are optional, but

+ // you will get console errors if the Observable is in an error state.

+);

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

81

+ }

}

Writing data to the API

To write data to our API, we need to add several new methods to our DemoService

class:

src/app/demo.service.ts:

@Injectable()

export class DemoService {

 constructor(private http:HttpClient) {

+ createFood(food) {

+ let body = JSON.stringify(food);

+ return this.http.post('/api/food/', body, httpOptions);

+ }

+

+ updateFood(food) {

+ let body = JSON.stringify(food);

+ return this.http.put('/api/food/' + food.id, body, httpOptions);

+ }

+

+ deleteFood(food) {

+ return this.http.delete('/api/food/' + food.id);

+ }

}

Notice that our createFood(), updateFood(), and deleteFood() methods use API

endpoints which return the saved object in JSON format. Returning the object when

creating, updating, or deleting is a nice convenience for the developer of the front-end

application. Not all APIs return this data. Some may return a different status code, some

XML data, or nothing at all. Consult the documentation for your API to determine what

the response format will look like.

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

82

Possible bug in Firefox

At the time of this writing, the API calls on one of my projects were failing when run in

Firefox. It seems that Angular 2 was not sending the Content-type:

application/json headers with the requests. If your API supports this, you might be able

to work around the problem by changing your API URLs to include the .json extension

(e.g., /api/food/1.json).

This seems to be Firefox specific and does not affect Chrome or Edge.

Creating and Saving Data from Our Component

Now that we have the service in place, we can add some basic CRUD features to our

AppComponent.

src/app/app.component.ts:

import {Component} from '@angular/core';

import {DemoService} from './demo.service';

import {Observable} from 'rxjs/Rx';

@Component({

 selector: 'demo-app',

 template:`

 <h1>Angular 5 HttpClient Demo App</h1>

 <p>This is a complete mini-CRUD application using an Express back-end. See

src/app/demo.service.ts for the API call code.</p>

 <h2>Foods</h2>

- <li *ngFor="let food of foods">{{food.name}}

+ <li *ngFor="let food of foods"><input type="text" name="food-name"

[(ngModel)]="food.name">

+ <button (click)="updateFood(food)">Save</button>

+ <button (click)="deleteFood(food)">Delete</button>

+

+ <p>Create a new food: <input type="text" name="food_name"

[(ngModel)]="food_name"><button

(click)="createFood(food_name)">Save</button></p>

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

83

 <h2>Books and Movies</h2>

 ...

 `

})

export class AppComponent {

 public foods;

 public books;

 public movies;

+ public food_name;

 ...

 getFoods() {

 ...

 }

 getBooksAndMovies() {

 ...

 }

+ createFood(name) {

+ let food = {name: name};

+ this._demoService.createFood(food).subscribe(

+ data => {

+ // refresh the list

+ this.getFoods();

+ return true;

+ },

+ error => {

+ console.error("Error saving food!");

+ return Observable.throw(error);

+ }

+);

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

84

+ }

+

+ updateFood(food) {

+ this._demoService.updateFood(food).subscribe(

+ data => {

+ // refresh the list

+ this.getFoods();

+ return true;

+ },

+ error => {

+ console.error("Error saving food!");

+ return Observable.throw(error);

+ }

+);

+ }

+

+ deleteFood(food) {

+ if (confirm("Are you sure you want to delete " + food.name + "?")) {

+ this._demoService.deleteFood(food).subscribe(

+ data => {

+ // refresh the list

+ this.getFoods();

+ return true;

+ },

+ error => {

+ console.error("Error deleting food!");

+ return Observable.throw(error);

+ }

+);

+ }

+ }

}

You'll notice that we added some basic form fields and buttons to the template, and new

methods createFood(), updateFood(), and deleteFood() to the component class. These

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

85

are called when users click the buttons in the template, and handle saving and deleting

the data.

For simplicity, I have used a simple JavaScript confirm() dialog as a delete

confirmation. An enhancement might be to implement a nicer-looking dialog using

another Angular component.

Can we use Observable.forkJoin() when writing to an API?

It's theoretically possible, but I wouldn't.

If you use forkJoin() to run multiple data-saving requests, it could have unpredictable

results. forkJoin() will cancel all the requests if the first one returns an error. However,

if one request completes successfully while a later one fails, your data could end up in a

broken or partially-saved state. It seems best to use parallel API calls only when reading

data.

To write multiple types of data to an API, try one of the following workflows:

1. Chain the API calls, calling each one after the previous one completes

successfully, or

2. Revise your API to accept a single, larger data object, and save each piece of that

larger object within the back-end code

Want More Angular?

See the next part in my series of posts about Angular API calls, showing API

authentication using Django Rest Framework and JSON Web Tokens.

Looking for more examples of Angular API calls using HttpClient and ForkJoin? See

how I used Angular, Django Rest Framework, HttpClient, and ForkJoin to rebuild a

classic text adventure game.

See how to upgrade the code samples in this post for full, native compatibility with

RxJS 6

https://www.metaltoad.com/blog/angular-api-calls-django-authentication-jwt
https://www.metaltoad.com/blog/angular-api-calls-django-authentication-jwt
https://www.kdechant.com/blog/angular-text-adventure-part-3-the-game-data-models
https://www.kdechant.com/blog/angular-text-adventure-part-3-the-game-data-models
https://www.kdechant.com/blog/angular-text-adventure-part-3-the-game-data-models
https://www.metaltoad.com/blog/angular-6-upgrading-api-calls-rxjs-6
https://www.metaltoad.com/blog/angular-6-upgrading-api-calls-rxjs-6

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

86

 (9)Create a new project

Use the ng new command to start creating your Tour of Heroes application.

This tutorial:

1. Sets up your environment.

2. Creates a new workspace and initial application project.

3. Serves the application.

4. Makes changes to the new application.

To view the application's code, see the live example / download example.

Set up your environment

To set up your development environment, follow the instructions in Local Environment

Setup.

Create a new workspace and an initial application

You develop applications in the context of an Angular workspace.

A workspace contains the files for one or more projects. A project is the set of files that

make up an application or a library.

To create a new workspace and an initial project:

https://angular.io/generated/live-examples/toh-pt0/stackblitz.html
https://angular.io/generated/zips/toh-pt0/toh-pt0.zip
https://angular.io/guide/setup-local
https://angular.io/guide/setup-local
https://angular.io/guide/glossary#workspace
https://angular.io/guide/glossary#project

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

87

1. Ensure that you aren't already in an Angular workspace directory. For example, if

you're in the Getting Started workspace from an earlier exercise, navigate to its

parent.

2. Run ng new followed by the application name as shown here:

content_copyng new angular-tour-of-heroes

3. ng new prompts you for information about features to include in the initial

project. Accept the defaults by pressing the Enter or Return key.

ng new installs the necessary npm packages and other dependencies that Angular

requires. This can take a few minutes.

ng new also creates the following workspace and starter project files:

 A new workspace, with a root directory named angular-tour-of-heroes

 An initial skeleton application project in the src/app subdirectory

 Related configuration files

The initial application project contains a simple application that's ready to run.

Serve the application

Go to the workspace directory and launch the application.

content_copycd angular-tour-of-heroes

ng serve --open

The ng serve command:

 Builds the application

 Starts the development server

 Watches the source files

 Rebuilds the application as you make changes

The --open flag opens a browser to http://localhost:4200.

You should see the application running in your browser.

Angular components

The page you see is the application shell. The shell is controlled by an

Angular component named AppComponent.

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

88

Components are the fundamental building blocks of Angular applications. They display

data on the screen, listen for user input, and take action based on that input.

Make changes to the application

Open the project in your favorite editor or IDE. Navigate to the src/app directory to edit

the starter application. In the IDE, locate these files, which make up

the AppComponent that you just created:

FILES DETAILS

app.component.ts The component class code, written in TypeScript.

app.component.html The component template, written in HTML.

app.component.css The component's private CSS styles.

When you ran ng new, Angular created test specifications for your new application.

Unfortunately, making these changes breaks your newly created specifications.

That won't be a problem because Angular testing is outside the scope of this tutorial

and won't be used.

To learn more about testing with Angular, see Testing.

Change the application title

Open the app.component.ts and change the title property value to 'Tour of Heroes'.

app.component.ts (class title property)

content_copytitle = 'Tour of Heroes';

Open app.component.html and delete the default template that ng new created. Replace

it with the following line of HTML.

app.component.html (template)

https://angular.io/guide/testing

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

89

content_copy<h1>{{title}}</h1>

The double curly braces are Angular's interpolation binding syntax. This interpolation

binding presents the component's title property value inside the HTML header tag.

The browser refreshes and displays the new application title.

Add application styles

Most apps strive for a consistent look across the application. ng new created an

empty styles.css for this purpose. Put your application-wide styles there.

Open src/styles.css and add the code below to the file.

src/styles.css (excerpt)

content_copy/* Application-wide Styles */

h1 {

 color: #369;

 font-family: Arial, Helvetica, sans-serif;

 font-size: 250%;

}

h2, h3 {

 color: #444;

 font-family: Arial, Helvetica, sans-serif;

 font-weight: lighter;

}

body {

 margin: 2em;

}

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

90

body, input[type="text"], button {

 color: #333;

 font-family: Cambria, Georgia, serif;

}

button {

 background-color: #eee;

 border: none;

 border-radius: 4px;

 cursor: pointer;

 color: black;

 font-size: 1.2rem;

 padding: 1rem;

 margin-right: 1rem;

 margin-bottom: 1rem;

 margin-top: 1rem;

}

button:hover {

 background-color: black;

 color: white;

}

button:disabled {

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

91

 background-color: #eee;

 color: #aaa;

 cursor: auto;

}

/* everywhere else */

* {

 font-family: Arial, Helvetica, sans-serif;

}

Final code review

Here are the code files discussed on this page.

src/app/app.component.ts

src/app/app.component.html

src/styles.css (excerpt)

content_copyimport { Component } from '@angular/core';

@Component({

 selector: 'app-root',

 templateUrl: './app.component.html',

 styleUrls: ['./app.component.css']

})

export class AppComponent {

 title = 'Tour of Heroes';

https://angular.io/api/core/Component
https://angular.io/api/core/Component

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

92

}

	Providing dependency
	Injecting a dependency
	 (2)Services
	 Using a Service
	 (3)Creating Services
	 Registering Services
	 Dependencies
	 Registering a Service with $provide

	 Unit Testing
	 Introduction
	What is dependecy Injection and why do we use it ?
	What is Service and why do we use it?
	Why Services?
	Creating a Service
	Providing a Service
	Injecting a Service
	Demosteps

	Hierarchical injectors
	Types of injector hierarchies
	ModuleInjector
	Platform injector

	ElementInjector
	@Directive() and @Component()

	Resolution rules
	Resolution modifiers
	Types of modifiers
	@Optional()
	@Self()
	@SkipSelf()
	@SkipSelf() with @Optional()

	@Host()

	Logical structure of the template
	Providing services in @Component()
	Example app structure
	Using the providers array
	Using the viewProviders array
	providers vs. viewProviders

	Modifying service visibility
	Visibility of provided tokens
	@SkipSelf() and viewProviders
	@Host() and viewProviders

	ElementInjector use case examples
	Scenario: service isolation
	Scenario: multiple edit sessions
	Scenario: specialized providers

	 (6)Injecting a service into another service in Angular
	 (7) Injection context:-
	Class constructors
	Stack frame in context
	Run within an injection context
	Asserts the context
	Using DI outside of a context

	 (8)Angular 5: Making API calls with the HttpClient service
	About Observables and the Http service
	Try this at home!
	The Back-End API
	Getting Started with HttpClient
	Building the Angular Component
	Executing a Single HTTP Request
	Executing multiple concurrent HTTP requests
	Writing data to the API
	Possible bug in Firefox

	Creating and Saving Data from Our Component
	Can we use Observable.forkJoin() when writing to an API?

	Want More Angular?

	 (9)Create a new project
	Set up your environment
	Create a new workspace and an initial application
	Serve the application
	Angular components
	Make changes to the application
	Change the application title
	Add application styles

	Final code review

