
SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

1

.

MSCIT SEM-2 REACTJS

Shree H.N.Shukla college2

vaishali nagar

Near Amrapali Under Bridge,

Raiya road

Rajkot

Ph No:-0281 2440478

Shree H.N.Shukla college3

vaishali nagar

Near Amrapali Under Bridge,

Raiya road

Rajkot

Ph No:-0281 2440478

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

2

Unit :3
Form Handling,Components and fragments

 Event Handling: Event Handling and Binding event

handlers

 Rendering: Conditional Rendering and List Rendering, List and keys, Index as

Key Anti-pattern

 Introduction: Basic form handling

 Components: Components Life Cycle Methods,

 Components Mounting Lifecycle methods,

 Components Updating Lifecycle methods, Pure

 Event Handling and Binding event handlers

reactjs

Here's a detailed explanation of event handling and binding event handlers in ReactJS:

1. Event Handling:

 Purpose: Respond to user interactions with elements in your React application.

 Synthetic Events: React creates its own event system with cross-browser compatibility.

 Common Events: Clicks, keypresses, form submissions, mouse movements, etc.

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

3

2. Binding Event Handlers:

 Key Point: Ensure this inside event handlers refers to the correct component instance.

 Methods:

a. Arrow Functions: - Automatically inherit this from the enclosing scope. - Concise and

often preferred for event handlers. jsx <button onClick={() => handleClick()}>Click

me</button>

b. Binding in Constructor (Class Components): - Use this.handleClick =

this.handleClick.bind(this) in the constructor. jsx constructor(props) { super(props);

this.handleClick = this.handleClick.bind(this); }

c. Binding in Render (Less Efficient): - Bind directly in JSX using

onClick={this.handleClick.bind(this)}. - May cause performance issues in large

applications.

3. Accessing Event Data:
 Event Object: React passes a synthetic event object to handlers.

 Properties: Access information like target element, event type, coordinates, etc.

JavaScript

handleClick(event) {

 console.log(event.target); // Element that triggered the event

}

4. Best Practices:
 Prefer Arrow Functions: Cleaner syntax and this binding.

 Avoid Binding in Render: Potential performance overhead.

 Consider Event Delegation: For large lists or dynamic content, improve efficiency by

handling events at a parent level.

 Use Libraries for Complex Forms: formik, react-hook-form, and others simplify form

handling and validation.

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

4

Rendering: Conditional Rendering and

List Rendering, List and keys,

Index as Key Anti-pattern react js

In React, conditional rendering and list rendering are common patterns that allow you to

dynamically control the content displayed in your components. Additionally, when

working with lists, React requires each item in a list to have a unique "key" property to

optimize rendering. However, using the index as the key is considered an anti-pattern in

certain scenarios, and it's important to understand when to avoid it.

Conditional Rendering:

Conditional rendering is the practice of rendering different content based on certain

conditions. It can be achieved using JavaScript expressions or ternary operators inside the

JSX.

Example:
jsx

import React from 'react';

const ConditionalComponent = ({ isLoggedIn }) => {

 return (

 <div>

 {isLoggedIn ? (

 <p>Welcome, User!</p>

) : (

 <p>Please log in to access the content.</p>

)}

 </div>

);};

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

5

export default ConditionalComponent;

List Rendering:

List rendering involves mapping over an array and rendering each item in the array. This is

commonly used when you have dynamic data to display.

Example:

jsx

import React from 'react';

const ListComponent = ({ items }) => {

 return (

 {items.map((item) => (

 <li key={item.id}>{item.name}

))}

);

};

export default ListComponent;

List and Keys:

When rendering lists in React, it's important to assign a unique key to each item in the list.

Keys help React identify which items have changed, been added, or been removed. Keys

should be stable, unique, and preferably associated with the data being rendered.

Example:

jsx

import React from 'react';

const ListComponent = ({ items }) => {

 return (

 {items.map((item) => (

 <li key={item.id}>{item.name}

))}

);

};

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

6

export default ListComponent;

Index as Key Anti-pattern:

While it's common to use the array index as the key when rendering a list, it can lead to

performance issues and incorrect behavior in certain situations. This is especially

problematic when the list is dynamic and items can be added or removed.

Anti-pattern Example:

jsx

import React from 'react';

const ListComponent = ({ items }) => {

 return (

 {items.map((item, index) => (

 // Using the index as the key (anti-pattern)

 <li key={index}>{item.name}

))}

);

};

export default ListComponent;

Why it's an Anti-pattern:

If the order of the items changes, or items are added or removed, React might not be able

to correctly identify which item corresponds to which key.

It can lead to unnecessary re-renders and negatively impact performance.

Better Approach:

Use a unique identifier associated with the data, such as item.id, as the key.

jsx

{items.map((item) => (

 <li key={item.id}>{item.name}

))}

Understanding when and how to use keys is crucial for optimizing the performance of your

React applications, especially when dealing with dynamic lists.

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

7

 Introduction: Basic form handling

reactjs

Handling forms in React is a crucial part of building dynamic and interactive web

applications. React provides a way to manage and handle forms by using state to keep

track of form data and event handlers to respond to user input. Here's a basic example of

form handling in React:

Let's create a simple React component with a form that allows users to input their name:

jsx

import React, { useState } from 'react';

const BasicFormHandling = () => {

 // State to store the form data

 const [formData, setFormData] = useState({

 name: '',

 });

 // Event handler for input changes

 const handleInputChange = (e) => {

 const { name, value } = e.target;

 // Update the state with the new form data

 setFormData({

 ...formData,

 [name]: value,

 });

 };

 // Event handler for form submission

 const handleSubmit = (e) => {

 e.preventDefault();

 // Perform actions with the form data, such as making an API call or updating the state

 console.log('Form submitted with data:', formData);

 };

 return (

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

8

 <div>

 <h2>Basic Form Handling in React</h2>

 <form onSubmit={handleSubmit}>

 <label>

 Name:

 {/* Input field with an event handler */}

 <input

 type="text"

 name="name"

 value={formData.name}

 onChange={handleInputChange}

 />

 </label>

 {/* Submit button */}

 <button type="submit">Submit</button>

 </form>

 </div>

);

};

export default BasicFormHandling;

In this example:

We use the useState hook to create a state variable formData to store the form data. In this

case, it's just the user's name.

The handleInputChange function is an event handler for input changes. It updates the state

(formData) whenever the user types into the input field.

The handleSubmit function is an event handler for form submission. It prevents the default

form submission behavior, allowing you to handle the form data in a custom way (e.g.,

making an API call).

The form JSX includes an input field for the user's name and a submit button. The input

field has an onChange attribute that references the handleInputChange function, and the

form has an onSubmit attribute that references the handleSubmit function.

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

9

This is a basic example, and you can expand on it by adding more form fields, validation,

and additional logic based on your application's requirements.

 Components:

Components Life Cycle Methods reactjs

In React, components have a lifecycle that includes various phases from creation to

destruction. With the introduction of React Hooks, functional components can also utilize

lifecycle-related features. Here's an overview of the lifecycle methods for class

components and hooks used in functional components:

Class Components:

Mounting Phase:

constructor(): This method is called before the component is mounted. It's used for

initializing state and binding methods.

static getDerivedStateFromProps(): Invoked right before rendering when new props or

state are being received. It's used to update the state based on changes in props.

render(): The render method is responsible for rendering the component.

componentDidMount(): Called after the component has been rendered in the DOM. It's

suitable for side effects such as fetching data from an API.

Updating Phase:

static getDerivedStateFromProps(): Similar to the mounting phase, it's invoked right

before rendering when new props or state are being received.

shouldComponentUpdate(): Allows optimization by determining if the component

should re-render. It can prevent unnecessary renders.

render(): Renders the component.

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

10

componentDidUpdate(): Called after the component is updated in the DOM. It's suitable

for side effects related to the updated state or props.

Unmounting Phase:

componentWillUnmount(): Called just before the component is unmounted and

destroyed. It's used for cleanup tasks like canceling network requests or clearing up

subscriptions.

Functional Components with Hooks:

Mounting and Updating:

useEffect(): Combines componentDidMount, componentDidUpdate, and

componentWillUnmount in functional components. It runs after every render and is used

for side effects. The cleanup function in useEffect serves the same purpose as

componentWillUnmount.

State Management:

useState(): Replaces the need for setState in class components for managing state in

functional components.

Context:

useContext(): Allows functional components to subscribe to React context without

introducing a nesting component.

Memoization:

useMemo(): Memoizes the result of a function, preventing unnecessary recalculations.

useCallback(): Memoizes a callback function, preventing it from being recreated on every

render.

These lifecycle methods and hooks help you manage the state, perform side effects, and

optimize the rendering process in your React components. Understanding these methods is

crucial for building efficient and well-structured React applications. Keep in mind that

with the introduction of React Hooks, many class component lifecycle methods are not

used as frequently in modern React development.

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

11

 Components Mounting Lifecycle methods

In React class components, the mounting lifecycle methods are invoked during the initial

rendering of the component. These methods allow you to perform setup tasks, fetch data,

and interact with the DOM. Here are the key mounting lifecycle methods in a React class

component:

constructor():

The constructor method is the first method called when a component is created.

It is used for initializing state and binding event handlers.

Example:

jsx

constructor(props) {

 super(props);

 // Initialize state

 this.state = {

 data: [],

 };

 // Bind event handler

 this.handleClick = this.handleClick.bind(this);

}

static getDerivedStateFromProps():

Invoked right before rendering when new props or state are being received.

Used to update the state based on changes in props.

Example:

jsx

static getDerivedStateFromProps(nextProps, prevState) {

 if (nextProps.data !== prevState.data) {

 return {

 data: nextProps.data,

 };

 }

 return null;

}

render():

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

12

The render method is responsible for rendering the component.

It returns the React elements that make up the component's UI.

Example:

jsx

render() {

 return (

 <div>

 {/* Component's UI */}

 </div>

);

}

componentDidMount():

Called after the component has been rendered in the DOM.

Used for performing side effects, such as fetching data from an API.

Example:

jsx

componentDidMount() {

 // Fetch data after the component has mounted

 fetchData()

 .then((data) => {

 this.setState({ data });

 })

 .catch((error) => {

 console.error('Error fetching data:', error);

 });

}

These mounting lifecycle methods are executed in the order listed above when a

component is initially rendered. They provide opportunities to set up the initial state,

handle props changes, render the component, and perform side effects after the component

is mounted in the DOM. Keep in mind that with the introduction of React Hooks, the usage

of class components and these lifecycle methods has become less common in modern

React development. Hooks like useEffect in functional components are often used as an

alternative.

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

13

 Components Updating Lifecycle

methods reactjs

In React class components, updating lifecycle methods are invoked when a component is

re-rendered due to changes in its state or props. These methods allow you to control and

perform actions during the updating phase of the component. Here are the key updating

lifecycle methods in a React class component:

static getDerivedStateFromProps(nextProps, prevState):

Invoked right before rendering when new props or state are being received.

Used to update the state based on changes in props.

Example:
jsx

static getDerivedStateFromProps(nextProps, prevState) {

 if (nextProps.data !== prevState.data) {

 return {

 data: nextProps.data,

 };

 }

 return null;

}

shouldComponentUpdate(nextProps, nextState):

Called before rendering when new props or state are received.

Allows optimization by determining if the component should re-render.

Example:

jsx

shouldComponentUpdate(nextProps, nextState) {

 // Perform a check to determine if re-rendering is necessary

 return nextProps.value !== this.props.value || nextState.data !== this.state.data;

}

render():

The render method is responsible for rendering the component.

It returns the React elements that make up the component's UI.

getSnapshotBeforeUpdate(prevProps, prevState):

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

14

Invoked right before the most recently rendered output is committed to the DOM.

Used for capturing information from the DOM before it potentially changes.

Example:

jsx

getSnapshotBeforeUpdate(prevProps, prevState) {

 if (prevProps.list.length < this.props.list.length) {

 // Scroll position before the update

 return this.scrollRef.scrollTop;

 }

 return null;

}

componentDidUpdate(prevProps, prevState, snapshot):

Called after the component has been updated in the DOM.

Used for performing side effects related to the updated state or props.

Example:

jsx

componentDidUpdate(prevProps, prevState, snapshot) {

 if (snapshot !== null) {

 // Adjust scroll position after the update

 this.scrollRef.scrollTop = snapshot;

 }

}

These updating lifecycle methods provide opportunities to handle changes in state or

props, control the re-rendering process, and perform side effects after the component has

been updated in the DOM. Keep in mind that with the introduction of React Hooks, the

usage of class components and these lifecycle methods has become less common in

modern React development. Hooks like useEffect in functional components are often used

as an alternative.

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

15

 Pure:Components reactjs
In React, a "Pure Component" is a type of component that extends the

React.PureComponent class instead of the regular React.Component class. The key feature

of a pure component is that it performs a shallow comparison of its props and state to

determine whether it should re-render. If the props and state haven't changed, a pure

component prevents unnecessary renders, potentially improving performance.

Here's a basic example of a pure component:

Jsx

import React, { PureComponent } from 'react';

class PureExample extends PureComponent {

 render() {

 return (

 <div>

 <h2>Pure Component Example</h2>

 <p>Props value: {this.props.value}</p>

 </div>

);

 }

}

export default PureExample;

Key points about pure components:

Shallow Comparison:

Pure components implement a shallow comparison of props and state.

This means that it checks if the references of the props and state objects are the same as in

the previous render.

Automatic shouldComponentUpdate():

A pure component automatically implements the shouldComponentUpdate method with a

shallow prop and state comparison.

It returns false if the props and state have not changed, preventing unnecessary renders.

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

16

Performance Optimization:

Pure components are useful in scenarios where you want to optimize performance by

avoiding unnecessary renders.

They are particularly beneficial when dealing with large lists or datasets.

Example usage of a pure component in a parent component:

jsx

import React, { useState } from 'react';

import PureExample from './PureExample';

const ParentComponent = () => {

 const [value, setValue] = useState(0);

 const handleClick = () => {

 setValue(value + 1);

 };

 return (

 <div>

 <button onClick={handleClick}>Increment</button>

 <PureExample value={value} />

 </div>

);

};

export default ParentComponent;

In this example, even if the parent component re-renders due to a state change, the pure

component will only re-render if the value prop has changed. This can be especially

beneficial in scenarios where the rendering of the pure component is resource-intensive.

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

17

 Fragments react js

In React, a fragment is a lightweight way to group multiple elements without introducing

an additional parent container in the DOM. Fragments don't create a new DOM element;

they are like a wrapper that doesn't affect the DOM structure. Fragments were introduced

to address the issue of unnecessary div wrappers that could be added when you want to

return multiple elements from a component.

Here's how you can use fragments in React:

Using the <React.Fragment> syntax:

jsx

import React from 'react';

const MyComponent = () => {

 return (

 <React.Fragment>

 <h1>Hello</h1>

 <p>This is a paragraph.</p>

 </React.Fragment>

);

};

export default MyComponent;

Short syntax using <> and </>:

In modern React versions, you can use the shorthand syntax using empty angle brackets

(<> and </>). This is equivalent to using <React.Fragment>.

jsx

import React from 'react';

const MyComponent = () => {

 return (

 <>

 <h1>Hello</h1>

 <p>This is a paragraph.</p>

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

18

 </>

);

};

export default MyComponent;

Key Points:

No Extra DOM Element:

Fragments do not create an additional DOM element. They allow you to group elements

without introducing unnecessary wrappers.

Key Usage Scenarios:

Particularly useful when you need to return multiple elements from a component, for

example, inside a map function.

jsx

const ListComponent = () => {

 const items = ['Item 1', 'Item 2', 'Item 3'];

 return (

 <>

 <h2>List of Items:</h2>

 {items.map((item, index) => (

 <li key={index}>{item}

))}

 </>

);

};

Keys and Attributes:

When using fragments in a list, make sure to provide a unique key to each element.

jsx

const MyComponent = () => {

 return (

 <>

 <p key="paragraph1">First paragraph</p>

 <p key="paragraph2">Second paragraph</p>

 </>

);

};

SHREE H. N. SHUKLA COLLEGE OF I.T. & MGMT.
(AFFILIATED TO SAURASHTRA UNIVERSITY)

19

Fragments provide a clean way to structure your JSX when you need to return multiple

elements without introducing unnecessary container elements in the DOM. They help

maintain a clean and semantic structure in your React components.

	 Event Handling and Binding event handlers reactjs

