SHREE H.N.SHUKLA COLLEGE OF SCIENCE

S.Y.B.SC. SEM-4

PAPER 401
LINEAR ALGEBRA,REAL ANALYSIS
\& DIFFERENTIAL GEOMETRY formations

Linear Transformation

Prepared by: Ms.Renuka Dabhi
M.Sc.(Maths),B.Ed.

Lecturer H.N.SHUKLA COLLEGE OF SCIENCE

1. Linear Transformations

Linear transformations of Euclidean space
2. Kernel and Range
3. The matrix of alinear transformation Composition of linear transformations Kernel and Range

In the $m \times n$ linear system

$$
A \mathbf{x}=\mathbf{0}
$$

we can regard A astransforming elements of R^{n} (as column vectors) into elements of R^{m} via the rule

$$
T(\mathbf{x})=A \mathbf{x}
$$

Then solving the system amounts to finding all of the vectors $\mathbf{x} \in \mathrm{R}^{n}$ such that $T(\mathbf{x})=\mathbf{0}$.

Solving the differential equation

$$
y^{J J}+y=0
$$

is equivalent to finding functions y such that $T(y)=0$, where T is defined as

$$
T(y)=y^{J J}+y .
$$

Linear Transformations

Definition

Let V and W be vector spaces with the same scalars. A mapping $T: V \rightarrow W$ is called a linear transformation from V to W if it satisfies

$$
\begin{aligned}
& \text { 1. } T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v}) \text { and } \\
& \text { 2. } T(c \mathbf{v})=c T(\mathbf{v})
\end{aligned}
$$

for all vectors $\mathbf{u}, \mathbf{v} \in V$ and all scalars $c . V$ is called the domain and W the codomain of T.

Examples

$-T: \mathrm{R}^{n} \rightarrow \mathrm{R}^{m}$ defined by $T(\mathbf{x})=A \mathbf{x}$, where A is an $m \times n$ matrix
$-T: C^{k}(I) \rightarrow C^{k-2}(I)$ defined by $T(y)=y^{J J}+y$

- $T: M_{m \times n}(\mathrm{R}) \rightarrow M_{n \times m}(\mathrm{R})$ defined by $T(A)=A^{T}$
- $T: P_{1} \rightarrow P_{2}$ defined by $T(a+b x)=(a+2 b)+3 a x+4 b x^{2}$

Examples

1. Verify that $T: M_{m \times n}(\mathrm{R}) \rightarrow M_{n \times m}(\mathrm{R})$, where $T(A)=A^{T}$, is a linear transformation.
) The transpose of an $m \times n$ matrix is an $n \times m$ matrix.
) If $A, B \in M_{m \times n}(\mathrm{R})$, then

$$
T(A+B)=(A+B)^{T}=A^{T}+B^{T}=T(A)+T(B) .
$$

) If $A \in M_{m \times n}(\mathrm{R})$ and $c \in \mathrm{R}$, then

$$
T(c A)=(c A)^{T}=c A^{T}=c T(A) .
$$

2. Verify that $T: C^{k}(I) \rightarrow C^{k-2}(I)$, where $T(y)=y^{J J}+y$, is a linear transformation.

$$
\begin{aligned}
& \text { If } y \in C^{k}(1) \text { then } T(y)=y^{\prime \prime}+y \in \\
& C^{k-\lambda f\left(y_{1}, y_{2} \in C^{k}(1)\right. \text {, then }}
\end{aligned}
$$

$$
\begin{aligned}
T\left(y_{1}+y_{2}\right) & =\left(y_{1}+y_{2}\right)^{\prime \prime}+\left(y_{1}+y_{2}\right)=y_{1}^{\prime \prime}+y_{2}^{\prime \prime}+y_{1}+ \\
y_{2} & =\left(y_{1}^{\prime \prime}+y_{1}\right)+\left(y_{2}^{\prime \prime}+y_{2}\right)=T\left(y_{1}\right)+T\left(y_{2}\right) .
\end{aligned}
$$

) If $y \in C^{k}(I)$ and $c \in \mathrm{R}$, then

$$
T(c y)=(c y)^{\prime \prime}+(c y)=c y^{\prime \prime}+c y=c\left(y^{\prime \prime}+y\right)=c T(y) .
$$

Specifying linear transformations

Linear Trans-

 formationsA consequence of the properties of a linear transformation is that they preserve linear combinations, in the sensethat

$$
T\left(c_{1} \mathbf{v}_{1}+\cdots+c_{n} \mathbf{v}_{n}\right)=c_{1} T\left(\mathbf{v}_{1}\right)+\cdots+c_{n} T\left(\mathbf{v}_{n}\right)
$$

In particular, if $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ is a basis for the domain of T, then knowing $T\left(\mathbf{v}_{1}\right), \ldots, T\left(\mathbf{v}_{n}\right)$ is enough to determine T everywhere.

Let A be an $m \times n$ matrix with real entries and define $T: \mathrm{R}^{n} \rightarrow \mathrm{R}^{m}$ by $T(\mathbf{x})=A \mathbf{x}$. Verify that T is a linear transformation.

- If \mathbf{x} is an $n \times 1$ column vector then $A \mathbf{x}$ is an $m \times 1$ column vector.
$-T(\mathbf{x}+\mathbf{y})=A(\mathbf{x}+\mathbf{y})=A \mathbf{x}+A \mathbf{y}=T(\mathbf{x})+T(\mathbf{y})$
$-T(c \mathbf{x})=A(c \mathbf{x})=c A \mathbf{x}=c T(\mathbf{x})$
Such a transformation is called a matrix transformation. In fact, every linear transformation from R^{n} to R^{m} is a matrix transformation.

Matrix transformations

Linear Trans-

Theorem
Let $T: \mathrm{R}^{n} \rightarrow \mathrm{R}^{m}$ be a linear transformation. Then T is described by the matrix transformation $T(\mathbf{x})=A \mathbf{x}$, where

$$
A=T\left(\mathbf{e}_{1}\right) \quad T\left(\mathbf{e}_{2}\right) \quad \cdots \quad T\left(\mathbf{e}_{n}\right)
$$

and $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}$ denote the standard basis vectors for R^{n}. This A is called the matrix of T.

Example

Determine the matrix of the linear transformation $T: \mathrm{R}^{4} \rightarrow \mathrm{R}^{3}$ defined by

$$
\begin{aligned}
T\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(2 x_{1}+3 x_{2}+x_{4},\right. & 5 x_{1}+9 x_{3}-x_{4} \\
4 x_{1} & \left.+2 x_{2}-x_{3}+7 x_{4}\right)
\end{aligned}
$$

Definition

Suppose $T: V \rightarrow W$ is a linear transformation. The set consisting of all the vectors $\mathbf{v} \in V$ such that $T(\mathbf{v})=\mathbf{0}$ is called the kernel of T. It is denoted

$$
\operatorname{Ker}(T)=\{\mathbf{v} \in V: T(\mathbf{v})=\mathbf{0}\}
$$

Example

Let $T: C^{k}(1) \rightarrow C^{k-2}(1)$ be the linear transformation
$T(y)=y^{J J}+y$. Its kernel is spanned by $\{\cos x, \sin x\}$.

Remarks

- The kernel of a linear transformation is a subspace of its domain.
- The kernel of a matrix transformation is simply the null space of the matrix.

Definition

The range of the linear transformation $T: V \rightarrow W$ is the subset of W consisting of everything "hit by" T. In symbols,

$$
\operatorname{Rng}(T)=\{T(\mathbf{v}) \in W: \mathbf{v} \in V\} .
$$

Example

Consider the linear transformation $T: M_{n}(R) \rightarrow M_{n}(R)$ defined by $T(A)=A+A^{T}$. The range of T is the subspace of symmetric $n \times n$ matrices.

Remarks

- The range of a linear transformation is a subspace of its codomain.
- The range of a matrix transformation is the column space of the matrix.

Rank-Nullity revisited

$$
\operatorname{rank}(A)+\operatorname{nullity}(A)=n
$$

This fact is also true when T is not a matrix transformation:
Theorem
If $T: V \rightarrow W$ is a linear transformation and V is finite-dimensional, then

$$
\operatorname{dim}(\operatorname{Ker}(T))+\operatorname{dim}(\operatorname{Rng}(T))=\operatorname{dim}(V)
$$

$$
\mathbf{v}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{n} \mathbf{v}_{n} .
$$

In other words, picking a basis for a vector space allows us to
give coordinates for points. This will allow us to give matrices
In other words, picking a basis for a vector space allows us to
give coordinates for points. This will allow us to give matrices for linear transformations of vector spaces besides R^{n}.
Let V be a vector space with basis $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$. Then every vector $\mathbf{v} \in V$ can be written in a unique way as a linear combination

The matrix of a linear transformation

Definition

Let V and W be vector spaces with ordered bases
$B=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ and $C=\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{m}\right\}$, respectively, and let $T: V \rightarrow W$ be a linear transformation. The matrix representation of T relative to the bases B and C is

$$
A=\left[a_{i j}\right]
$$

where

$$
T\left(\mathbf{v}_{j}\right)=a_{1 j} \mathbf{w}_{1}+a_{2 j} \mathbf{w}_{2}+\cdots+a_{m j} \mathbf{w}_{m}
$$

In other words, A is the matrix whose j-th column is $T\left(\mathbf{v}_{j}\right)$, expressed in coordinates using $\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{m}\right\}$.

Let $T: P_{1} \rightarrow P_{2}$ be the linear transformation defined by

$$
T(a+b x)=(2 a-3 b)+(b-5 a) x+(a+b) x^{2}
$$

Use bases $\{1, x\}$ for P_{1} and $\left\{1, x, x^{2}\right\}$ for P_{2} to give a matrix representation of T.

We have

$$
T(1)=2-5 x+x^{2} \text { and } T(x)=-3+x+x^{2}
$$

so

$$
A_{1}=\begin{array}{rr}
2 & -3 \\
-5 & 1 \\
1 & 1
\end{array} .
$$

Now use the bases $\left\{\frac{z}{z}, x_{-}+5\right\}$ for P_{1} and $\left\{f_{8} 1+2{ }_{2} 1+x^{2}\right\}$ for P_{2}.

$$
A_{2}=-5-24
$$

We have

$$
A_{1}=\begin{array}{rr}
-5 & 1 \\
1 & 1
\end{array}
$$

$$
16
$$

Composition of linear transformations

Definition

Let $T_{1}: U \rightarrow V$ and $T_{2}: V \rightarrow W$ be linear transformations.
Their composition is the linear transformation $T_{2} \circ T_{1}$ defined by

$$
\left(T_{2} \circ T_{1}\right)(\mathbf{u})=T_{2}\left(T_{1}(\mathbf{u})\right)
$$

Theorem
Let T_{1} and T_{2} be as above, and let B, C, and D be ordered bases for U, V, and W, respectively. If

- A_{1} is the matrix representation for T_{1} relative to B and C,
- A_{2} is the matrix representation for T_{2} relative to C and D,
- A_{21} is the matrix representation for $T_{2} \circ T_{1}$ relative to B and D,
then $A_{21}=A_{2} A_{1}$.

The inverse of a linear transformation

Definition

If $T: V \rightarrow W$ is a linear transformation, its inverse (if it exists) is a linear transformation $T^{-1}: W \rightarrow V$ such that

$$
T^{-1} \circ T(\mathbf{v})=\mathbf{v} \quad \text { and } \quad T \circ T^{-1} \quad(\mathbf{w})=\mathbf{w}
$$

for all $\mathbf{v} \in V$ and $\mathbf{w} \in W$.
Theorem
Let T be as above and let A be the matrix representation of T relative to bases B and C for V and W, respectively. T has an inverse transformation if and only if A is invertible and, if so, T^{-1} is the linear transformation with matrix A^{-1} relative to C and B.

Example

Let $T: P_{2} \rightarrow P_{2}$ be defined by

$$
T\left(a+b x+c x^{2}\right)=(3 a-b+c)+(a-c) x+(4 b+c) x^{2} .
$$

Using the basis $\left\{1, x, x^{2}\right\}$ for P_{2}, the matrix representation for T is

$$
A=\begin{array}{rrr}
3 & -1 & 1 \\
1 & 0 & -1 \\
0 & 4 & 1
\end{array} .
$$

This matrix is invertible and

$$
A^{-1}=\frac{1}{17} \begin{array}{rrrr}
4 & 5 & 1 \\
-1 & 3 & 4 \\
4 & -12 & 1
\end{array} .
$$

Thus, T^{-1} is given by

$$
T^{-1}\left(a+b x+c x^{2}\right)=\frac{4 a+5 b+c}{17}+\frac{-a+3 b+4 c}{17} x+\frac{4 a-12 b+c}{17} x^{2}
$$

Theorem

Let $T: V \rightarrow W$ be a linear transformation and A be a matrix representation of T relative to some bases for V and W.
$-\operatorname{Ker}(T)=\left\{c_{1} \mathbf{v}_{1}+\cdots+c_{n} \mathbf{v}_{n} \in V:\left(c_{1}, \ldots, c_{n}\right) \in\right.$ nullspace $(A)\}$,
$-\operatorname{Rng}(T)=\left\{c_{1} \mathbf{w}_{1}+\cdots+c_{m} \mathbf{W}_{m} \in W:\left(c_{1}, \ldots, c_{m}\right) \in\right.$ colspace $(A)\}$.

