14

MASTER OF SCIENCE MATHEMATICS Examination

MSC MATHS Semester - 1 JANUARY 2025 (Regular) JANUARY - 2025

ALGEBRA-1 Faculty Gde: 003 Subject Code: 16SIPMSMA-CO-01-00001 [Total Marks: 70 Time : Hours Instruction All questions are compulsary Answer Briefly any seven of the following (Out of ten) Q.1 14 Define a simple group and give an example of a simple group. RA3010727767 For a group G, prove that, the conjugate class C(e) generated by the identity e is the singleton set $\{e\}$. In standard notation, prove or disprove that, S₃ is an abelian group. Write product disjoint cycles, Define term: Integral Domain. Define conjugate relation on a group gras it an equivalence relation on G? Let H < G and [G:H] = 2. Prove that, H is a maximal normal subgroup of G. ...m.
., prove that, {0

. or a ring R and its ideal I of

2 Answer the following (Any Two)

State and Prove, First Isomo 8 Define the terms: Commutator element and commutator subgroup. For a ring R, prove that, {0} and R both are ideals of R. For a ring R and its ideal I on R, prove that, if $1 \in I$, then I = R.

State and Prove, First Isomorphism Theorem of Rings.

State and Prove, Third Isomorphism Theorem of Groups.

- 3 Let G_1 , G_2 be two groups, N_1 be a normal subgroup of G_1 and N_2 be a normal subgroup of G_2 . In standard notation prove that, (i) $N_1 \times N_2$ is a normal subgroup of $G_1 \times G_2$ and (ii) $M_1 \times M_2 \simeq \left[\frac{G_1}{N_1} \right] \times \left[\frac{G_2}{N_2} \right]$.
- Let G be a finite cyclic group and $o(G) = n \ge 2$. Prove that, Aut $(G) = \{\phi_r : G \ne G \}$ defined by $\phi_r(x) = x^r$, for all $x \in G \Rightarrow d = 1 \le r \le n$ with $(n,r) = 1\}$.
 - Let G be a finite group and p divide to the order of the group G. Let n_p be the number of Sylow p-subgroups of p rove that, n_p will divide to the order of the group G.

 OR

 OR

 In standard notation prove that, n_p is an ideal of n_p , where R is a ring and n_p is its ideal.

 Let R be a ring and n_p be the n_p
- Answer the following questions (Any Two)

 For a group G, in standard notation prove that,

 i. G' is normal subgroup of G.
 - $^{G}\!/_{H}$ is a belian, then prove that, $^{G'}$ is a subset of H.

is an abelian group.

2

I of R.

2

Let R be a ring and A, B be two ideals of R. Prove that, $\{\sum_{i=1}^t a_i b_i \mid t \geq 1,$ $a_i \in A$, $b_i \in B$, for all i = 1, 2, 3, ..., t and A \cap B both are ideals of R.

Prove that, the collection of all normal subgroups of S_n $(n \ge 5)$ is precisely $\{\{e\}, A_n, S_n\}$.

Let R be a ring and $1 \in R$. Let M be an ideal of R with M $^{\neq}$ R. Prove that, M is a R/M Fa field.

maximal ideal of R if and only if

Let H, K be two distinct maximal normal subgroups of a group G. Prove that, H

also a maximal normal subgroup of H.